Traveling down the road: from cognitive neuroscience to mathematics education -and back
详细信息    查看全文
  • 作者:Bert De Smedt (1)
    Lieven Verschaffel (1)
  • 刊名:ZDM
  • 出版年:2010
  • 出版时间:October 2010
  • 年:2010
  • 卷:42
  • 期:6
  • 页码:649-654
  • 全文大小:148KB
  • 参考文献:1. Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. / Trends in Cognitive Sciences, / 10, 146-51. CrossRef
    2. Bornemann, B., Foth, M., Horn, J., Ries, J., Warmuth, E., Wartenburger, I., et al. (2010). Mathematical cognition—Individual differences in resource allocation. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0253-x .
    3. Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: Identification and intervention. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0267-4 .
    4. Cacioppo, J. T., Berntson, G. G., & Nusbaum, H. C. (2008). Neuroimaging as a new tool in the toolbox of psychological science. / Current Directions in Psychological Science, / 17, 62-7. CrossRef
    5. De Corte, E., Greer, B., & Verschaffel, L. (1996). Learning and teaching mathematics. In D. C. Berliner & R. C. Calfee (Eds.), / Handbook of educational psychology (pp. 491-49). New York: MacMillan.
    6. De Smedt, B., Ansari, D., Grabner, R. H., Hannula, M. M., Schneider, M., & Verschaffel, L. (2010). Cognitive neuroscience meets mathematics education. / Educational Research Review, / 5, 97-05. CrossRef
    7. Dowker, A. (2005). / Individual differences in arithmetic. Implications for psychology, neuroscience and education. Hove: Psychology Press. CrossRef
    8. Gabrieli, J. E. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. / Science, / 325, 280-83. CrossRef
    9. Grabner, R. H., & Ansari, D. (2010). Promises and pitfalls of a “cognitive neuroscience of mathematics learning- / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0283-4 .
    10. Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), / Handbook of educational psychology (pp. 15-6). New York: MacMillan.
    11. Howard-Jones, P. (2008). Education and neuroscience [special issue]. / Educational Research, 50(2):119-01.
    12. Landgraf, S., van der Meer, E., & Krueger, F. (2010). Cognitive resource allocation for neuronal activity underlying mathematical cognition: A multi-method study. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0264-7 .
    13. Lee, K., Yeong, S. H. M., Ng, S. F., Venkatraman, V., Graham, S., & Chee, M. W. L. (2010). Computing solutions to algebraic problems using a symbolic vs. a schematic strategy. / ZDM—The International Journal on Mathematics Education. doi:10.1007/s11858-010-0265-6 .
    14. Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. / Child Development, / 75, 1357-372. CrossRef
    15. Menon, V. (2010). Developmental cognitive neuroscience of arithmetic: Implications for learning and education. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0242-0 .
    16. Nickerson, S. D., & Whitacre, I. (2010). A local instruction theory for the development of number sense. / Mathematical Thinking and Learning, / 3, 227-52. CrossRef
    17. Obersteiner, A., Dresler, T., Reiss, K., Vogel, C. M., Pekrun, R., & Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving. Chances and limitations in combining educational and neuroscientific research. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0256-7 .
    18. Preusse, F., van der Meer, E., Ullwer, D., Brucks, M., Krueger, F., & Wartenburger, I. (2010). Long-term characteristics of analogical processing in high-school students with high fluid intelligence. An fMRI study. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0259-4 .
    19. Sloane, F. C. (2008). Randomized trials in mathematics education: Recalibrating the proposed high watermark. / Educational Researcher, / 9, 624-30. CrossRef
    20. Stavy, R., & Babai, R. (2010). Overcoming intuitive interference in mathematics: Insights from behavioural, brain imaging and intervention studies. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0251-z .
    21. Stern, E. (2005). Pedagogy meets neuroscience. / Science, / 310, 745. CrossRef
    22. Stern, E., & Schneider, M. (2010). Editorial: A digital roadmap analogy of the relation between neuroscience and educational research. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0278-1 .
    23. Tang, Y. Y., Zhang, W. T., Chen, K. W., Feng, S. G., Ji, Y., Shen, J. X., et al. (2006). Arithmetic processing in the brain shaped by cultures. / Proceedings of the National Academy of Sciences of the United States of America, / 103, 10775-0780. CrossRef
    24. Thomas, M. J., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0272-7 .
    25. van Merri?nboer, J. J. G., & Kirschner, P. (2007). / Ten steps to complex learning. A systematic approach to four- / component instructional design. New York: Lawrence Erlbaum Associates.
    26. Zago, L., Petit, L., Mellet, E., Joliot, M., Mazoyer, B., & Tzourio-Mazoyer, N. (2010). Neural correlates of counting large numerosity. / ZDM-em class="a-plus-plus">The International Journal on Mathematics Education. doi:10.1007/s11858-010-0254-9 .
    27. Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—Evidence from brain imaging studies. / Neuroscience and Biobehavioral Reviews, / 33, 909-25. CrossRef
  • 作者单位:Bert De Smedt (1)
    Lieven Verschaffel (1)

    1. Department of Educational Sciences, Katholieke Universiteit Leuven, Vesaliusstraat 2, 3000, Leuven, Belgium
文摘
In this commentary paper to the special issue on “Cognitive Neuroscience and Mathematics Education- we reflect on the connection between cognitive neuroscience and mathematics education from an educational research point of view. The current issue highlights that cognitive neuroscience offers a series of tools, methodologies and theories to investigate cognitive processes that take place during mathematical thinking and learning. This might complement and extend our knowledge that has been obtained on the basis of behavioral data only, the common approach in educational research. At the same time, we note that the existing neuroscientific studies have investigated mathematical performance in relative isolation from the educational context. The characteristics of this context have, however, a large influence on mathematical performance and its correlated brain activity, an issue that should be addressed in future research. We contend that traveling back and forth from cognitive neuroscience to mathematics education might yield a better understanding of how mathematical learning takes place and how it can be influenced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700