Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case
详细信息    查看全文
  • 作者:Tariq M. Khan ; Mohammad A. U. Khan…
  • 关键词:Isotropic diffusion ; Fingerprint enhancement ; Entropy ; Squared ; difference ; Stopping criterion
  • 刊名:EURASIP Journal on Image and Video Processing
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:2016
  • 期:1
  • 全文大小:4,356 KB
  • 参考文献:1.J Bernd, Spatio-Temporal Image Processing, 1st, vol. 751 (Springer-Verlag, Berlin Heidelberg, 1993).MATH
    2.AZ Averbuch, FG Meyer, JO Stromberg, RR Coifman, A Vassiliou, Low bit-rate efficient compression for seismic data. IEEE Trans. Image Process. 10(12), 1801–1814 (2001).CrossRef MathSciNet MATH
    3.J Weickert, Coherence enhancing diffusion of colour images. Image Vis. Comput. 17:, 201–212 (1999).CrossRef
    4.TM Khan, MA Khan, Y Kong, Boosting CED using robust orientation estimation. Int. J. Multimedia Appl. 6(2) (2014).
    5.MAU Khan, TM Khan, Fingerprint image enhancement using data driven Directional Filter. Bank. Optik-In. J. Light Electron Optics. 124(23), 6063–6068 (2013).CrossRef
    6.MAU Khan, A Khan, TM Khan, M Abbas, N Mohammad, in International Conference on Information and Emerging Technologies (ICIET). Fingerprint image enhancement using principal component analysis (PCA) filters (IEEEKarachi, 2010), pp. 1–6.
    7.M Kaas, A Witkin, Analyzing oriented patterns. Comput. Vis. Graphics Image Process. 37:, 362–385 (1987).CrossRef
    8.MAU Khan, TM Khan, O Kittaneh, Y Kong, Stopping criterion for anisotropic image diffusion. Optik-Int. J. Light Electron Optics. 127(1), 156–160 (2016).CrossRef
    9.G Hellwig, Partial differential equations (Teubner, Stuttgart, 1977).MATH
    10.IG Petrowsk, Vorlesungen uber partielle Differentialgleichungen (Teubner, Leipzig, 1955).
    11.P Perona, J Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Transa. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990).CrossRef
    12.GH Cottet, L Germain, Image processing through reaction combined with nonlinear diffusion. Math. Comput. 61:, 659–673 (1993).CrossRef MathSciNet MATH
    13.J Weickert, Anisotropic Diffusion in Image Processing (ECMI Series, Teubner-Verlag, Stuttgart, Germany, 1998).MATH
    14.A Almansa, LT Indeberg, Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection. IEEE Trans. Image Process. 9:, 2027–2041 (2000).CrossRef MathSciNet MATH
    15.TM Khan, MA Khan, Y Kong, Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters. Optik-Int. J. Light Electron Optics. 125(16), 4206–4214 (2014).CrossRef
    16.MAK Khan, TM Khan, SA Khan, in 7th International Conference on Emerging Technologies. Coherence enhancement diffusion using Multi-Scale DFB (IEEEIslamabad, 2011), pp. 1–6.
    17.M Nitzberg, T Shiota, Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14:, 826–833 (1992).CrossRef
    18.J Weickert, Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31:, 111–127 (1999).CrossRef
    19.D Chen, MacS Lachlan, M Kilmer, Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising. SIAM J. Sci. Comput. 33:, 2972–2994 (2011).CrossRef MathSciNet MATH
    20.A Ilyevsky, E Turkel, Stopping criteria for anisotropic PDEs in image processing. J. Sci. Comput. 45:, 333–347 (2010).CrossRef MathSciNet MATH
    21.G Gilboa, N Sochen, YY Zeevi, Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8), 2269–2280 (2006).CrossRef
    22.G Gilboa, Nonlinear scale space with spatially varying stopping time. IEEE Trans. Pattern Anal. Mach. Intell. 30:, 2175–2187 (2008).CrossRef
    23.J Weickert, Scale-space properties of nonlinear diffusion filtering with a diffusion tensor Report No. 110 (Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994).
    24.M Ferraro, G Boccignone, T Caelli, On the representation of image structures via scale space entropy conditions. IEEE Trans. Pattern Anal. Mach Intell. 21(11), 1199–1203 (1999).CrossRef
    25.J Sporring, in Proceeding of ICPR’96. The entropy of scale-space (SpringerWashington DC, 1996), pp. 900–9004.
    26.J Sporring, The entropy of scale-space. Department of Computer Science / University of Copenhagen Universitetsparken 1 / DK-2100 Copenhagen East Denmark, (1996).
    27.AP Witkin, in Proc. of International Joint Conference on Arti?cial Intelligence (IJCAI). Scale space filtering, (1983).
    28.JJ Koenderink, The structure of images. Biol. Cybernet. 50(5), 363–370 (1984).CrossRef MathSciNet MATH
    29.RC Gonzalez, RE Woods, Digital Image Processing, 3rd ed (Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006).
    30.AJ Frame, PE Undrill, MJ Cree, JA Olson, KC McHardy, PF Sharp, JV Forrester, A comparison of computer based classification methods applied to the detection of microaneurysms inophthalmic fluorescein angiograms. Comput. Biol. Med. 28(3), 225–238 (1998).CrossRef
    31.M Niemeijer, B van Ginneken, JJ Staal, MSASSMD Abramoff, Automatic detection of red lesions in digitalcolor fundus photographs. IEEE Trans. Med. Imaging. 24(5), 584–592 (2005).CrossRef
    32.B Zhang, X Wu You, Q Li, F Karray, Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recognit. 43:, 2237–2248 (2010).CrossRef
    33.M Sharma, A Kumar, Non uniform background illumination removal (NUBIR) from microscopic images. Int. J. Adv. Res. Technol. Eng. Sci. 1(2), 23–29 (2014).
    34.N Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979).CrossRef MathSciNet
    35.P Mrazek, Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput. Vis. 52(2), 189–203 (2003).CrossRef
    36.C Tsiotsios, M Petrou, On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013). Article in Press.CrossRef
    37.A Beghdadi, AL Negrate, Contrast enhancement technique based on local detection of edges. Conpu. Vis. Graphics Image Process. 46:, 162–174 (1989).CrossRef
    38.MATLAB, MATLAB Central; 20015. MATLAB Central - MathWorks.
    39.C Gottschlich, CBS Nlieb, Oriented diffusion filtering for enhancing low-quality fingerprint images. IET Biometrics. 1:, 105–113 (2012).CrossRef
    40.MAU Khan, K Ullah, A Khan, IU Islam, Robust multi-scale orientation estimation: Directional filter bank based approach. Elsevier J. Appl. Math. Comput. 242:, 814–824 (2014).CrossRef
    41.K Zuiderveld, Contrast limited adaptive histogram equalization (Academic Press Professional, Inc., San Diego, CA, USA, 1994).CrossRef
    42.L Hong, Y Wan, A Jain, Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20:, 777–789 (1998).CrossRef
  • 作者单位:Tariq M. Khan (1)
    Mohammad A. U. Khan (2)
    Yinan Kong (1)
    Omar Kittaneh (2)

    1. Department of Engineering, Macquarie University, Balaclava Rd, Sydney, 2109, Australia
    2. Department of Electrical and Computer Engineering, Biometric and Sensor Lab, Effat University, Jeddah, Saudi Arabia
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-5281
文摘
Images can be broadly classified into two types: isotropic and anisotropic. Isotropic images contain largely rounded objects while anisotropics are made of flow-like structures. Regardless of the types, the acquisition process introduces noise. A standard approach is to use diffusion for image smoothing. Based on the category, either isotropic or anisotropic diffusion can be used. Fundamentally, diffusion process is an iterated one, starting with a poor quality image, and converging to a completely blurred mean-value image, with no significant structure left. Though the process starts by doing a desirable job of cleaning noise and filling gaps, called under-smoothing, it quickly passes into an over-smoothing phase where it starts destroying the important structure. One relevant concern is to find the boundary between the under-smoothing and over-smoothing regions. The spatial entropy change is found to be one such measure that may be helpful in providing important clues to describe that boundary, and thus provides a reasonable stopping rule for isotropic as well as anisotropic diffusion. Numerical experiments with real fingerprint data confirm the role of entropy-change in identification of a reasonable stopping point where most of the noise is diminished and blurring is just started. The proposed criterion is directly related to the blurring phenomena that is an increasing function of diffusion process. The proposed scheme is evaluated with the help of synthetic as well as the real images and compared with other state-of-the-art schemes using a qualitative measure. Diffusions of some challenging low-quality images from FVC2004 are also analyzed to provide a reasonable stopping rule using the proposed stopping rule. Keywords Isotropic diffusion Fingerprint enhancement Entropy Squared-difference Stopping criterion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700