A novel LiSnVO4 anode material for lithium-ion batteries
详细信息    查看全文
  • 作者:L. P. Teo ; M. H. Buraidah ; A. K. Arof
  • 关键词:Lithium tin vanadium oxide (LiSnVO4) ; Lithium ; ion batteries ; Electrochemical properties
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:21
  • 期:8
  • 页码:2393-2399
  • 全文大小:509 KB
  • 参考文献:1.Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395-397View Article
    2.Liu R, Li N, Li D, Xia G, Zhu Y, Yu S, Wang C (2012) Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion battery. Mater Lett 73:1-View Article
    3.Sharma N, Shaju KM, Subba Rao GV, Chowdari BVR (2002) Sol–gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries. Electrochem Commun 4:947-52View Article
    4.Wang Q, Huang Y, Miao J, Zhao Y, Wang Y (2012) Synthesis and properties of carbon-doped Li2SnO3 nanocomposites as cathode material for lithium-ion batteries. Mater Lett 71:66-9View Article
    5.Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271-301View Article
    6.Wang QF, Huang Y, Zhao Y, Zhan W, Wang Y (2013) Preparation of Li2SnO3 and its application in lithium-ion batteries. Surf Inter Anal 45:1297-303View Article
    7.Wang L, Zhang W, Wang C, Wang D, Liu Z, Hao Q, Wang Y, Tang K, Qian Y (2014) A facile synthesis of highly porous CdSnO3 nanoparticles and their enhanced performance in lithium-ion batteries. J Mater Chem A 2:4970-974View Article
    8.Zhang DW, Zhang SQ, Jin Y, Yi TH, Xie S, Chen CH (2006) Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries. J. Alloys Comp 415:229-33View Article
    9.Zhao Y, Huang Y, Wang Q, Wang X, Zong M (2013) Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceram Int 39:1741-747View Article
    10.Jayaprakash N, Kalaiselvi N, Sun YK (2008) Combustion synthesized LiMnSnO4 cathode for lithium batteries. Electrochem Commun 10:455-60View Article
    11.Mani V, Babu G, Kalaiselvi N (2014) Li2MnSnO4/C anode for high capacity and high rate lithium battery applications. Electrochim Acta 133:347-53View Article
    12.Kishore MVVMS, Varadaraju UV, Raveau B (2004) Electrochemical performance of LiMSnO4 (M-?Fe, In) phases with ramsdellite structure as anodes for lithium batteries. J Solid State Chem 177:3981-986View Article
    13.Jayaprakash N, Kalaiselvi N (2008) Structural and electrochemical investigation of Li2MgSnO4 anode for lithium-ion batteries. Electrochem Commun 10:891-94View Article
    14.Toby BH (2005) CMPR-a powder diffraction toolkit. J Appl Crystallogr 38:1040-041View Article
    15.Wu E (1989) POWD, an interactive program for powder diffraction data interpretation and indexing. J Appl Crystallogr 22:506-10View Article
    16.Thongtem T, Thongtem S (2005) Preparation and characterization of Li1-xNi1+xO2 powder used as cathode materials. Adv Technol Mater Mater Process 7:71-6
    17.Shaheen WM, Maksod IHAE (2009) Thermal characterization of individual and mixed basic copper carbonate and ammonium metavanadate systems. J Alloys Compd 476:366-72View Article
    18.Hagemeyer A, Hogan Z, Schlichter M, Smaka B, Streukens G, Turner H, Volpe A Jr, Weinberg H, Yaccato K (2007) High surface area tin oxide. Appl Catal A Gen 317:139-48View Article
    19.Prakash D, Masuda Y, Sanjeeviraja C (2013) Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics 19:17-3View Article
    20.Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, United States of America
    21.Bose AC, Kalpana D, Thangadurai P, Ramasamy S (2002) Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J Power Sources 107:138-41View Article
    22.Altomare A, Giacovazzo C, Guagliardi A, Moliterni AGG, Rizzi R, Werner P-E (2000) New techniques for indexing: N-TREOR in EXPO. J Appl Crystallogr 33:1180-186View Article
    23.Zhao S, Bai Y, Zhang W-F (2010) Electrochemical performance of flowerlike CaSnO3 as high capacity anode material for lithium-ion batteries. Electrochim Acta 55:3891-896View Article
    24.Li C, Zhu Y, Fang S, Wang H, Gui Y, Bi L, Chen R (2011) Preparation and characterization of SrSnO3 nanorods. J Phys Chem Solids 72:869-74View Article
    25.Hu X, Xiao T, Huang W, Tao W, Heng B, Chen X, Tang Y (2012) Synthesis, characterization of core-shell carbon-coated CaSnO3 nanotubes and their performance as anode of lithium ion battery. Appl Surf Sci 258:6177-183View Article
    26.Liang Z, Zhao Y, Dong Y, Kuang Q, Lin X, Liu X, Yan D (2015) The low and high temperature electrochemical performance of Li3VO4/C anode material for Li-ion batteries. J Electroanal Chem 745:1-View Article
    27.Li M, Yang X, Wang C, Chen N, Hu F, Bie X, Wei Y, Du F, Chen G (2015) Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries. J Mater Chem A 3:586-92View Article
    28.Landschoot NV, Kelder EM, Kooyman PJ, Kwakernaak C, Schoonman J (2004) Electrochemical performance of Al2O3-coated Fe doped Li
  • 作者单位:L. P. Teo (1)
    M. H. Buraidah (1)
    A. K. Arof (1)

    1. Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
In this work, a new material LiSnVO4 has been prepared via sol-gel method utilizing ammonium metavanadate, acetates of tin and lithium as starting materials, and nitric acid and oxalic acid as complexing agents. The amount of starting materials used has been chosen so that the mole ratio of Li/Sn/V is 1:1:1. The sol-gel precursor has been sintered at 700?°C for 6?h. Based on thermogravimetry analysis (TGA) analysis, the formation mechanism suggested the product to be LiSnVO4. Energy-dispersive X-ray analysis (EDX) reveals the ~1:1 ratio of Sn:V. EDX results agree reasonably with the formation mechanism from TGA analysis that the Sn:V ratio is 1:1. Results from X-ray photoelectron spectroscopy (XPS) indicate that the oxidation states of Li, Sn, and V are +1, +2, and +5, respectively. Since there is no ICDD data available to match the XRD diffractogram of the material obtained, CMPR and powder diffraction data interpretation and indexing program (POWD) softwares have been used to predict the crystal structure system to be tetragonal (similar to that of SnO2). A fabricated LiSnVO4//Li cell can deliver a large initial irreversible discharge capacity of 1270 mAh g? and reversible capacity of 305.4 mAh g? at the end of second cycle, which drops to 211 mAh g? at the end of 53rd cycle. The capacity retention is 69?% with respect to the second discharge capacity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700