Stability of soil organic matter in two northeastern German fen soils: the influence of site and soil development
详细信息    查看全文
  • 作者:Christian Heller (1) christian.heller@agrar.hu-berlin.de
    Jutta Zeitz (1)
  • 关键词:Decomposition &#8211 ; Drained fen soils &#8211 ; Labile fraction &#8211 ; Soil organic matter
  • 刊名:Journal of Soils and Sediments
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:12
  • 期:8
  • 页码:1231-1240
  • 全文大小:319.0 KB
  • 参考文献:1. Balaria A, Johnson CE, Xu Z (2009) Molecular-scale characterization of hot-water-extractable organic matter in organic horizons of a forest soil. Soil Sci Soc Am J 73(3):812–821
    2. Berg B, McClaugherty C (2008) Plant litter (2nd ed). Springer, Berlin Heidelberg
    3. Bohlin E, H盲m盲l盲inen M, Sund茅n T (1989) Botanical and chemical characterization of peat using multivariate methods. Soil Sci 147(4):252–263
    4. Bragazza L, Iacomin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biol Fertil Soils 46:73–77
    5. MLUV Brandenburg (ed) (2006) Biogas in der Landwirtschaft (Biogas in agriculture). Ministerium f眉r L盲ndliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg, Potsdam (in German)
    6. Cameron CC, Esterle JS, Palmer CA (1989) The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes. Int J Coal Geol 12:105–156
    7. Chodak M, Khanna P, Beese F (2003) Hot water extractable C and N in relation to microbiological properties of soils under beech forests Biol Fertil Soils (2003) 39:123–130
    8. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, P茅rez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, D铆az S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071
    9. Couwenberg J, Joosten H (2001) Das Beispiel Deutschland. In: Succow M, Joosten H (eds) Landschafts枚kologische Moorkunde, 2nd edn. Schweizerbart, Stuttgart, pp 409–411 (in German)
    10. Delarue F, Laggoun-D茅farge F, Disnar JR, Lottier N, Gogo S (2011) Organic matter sources and decay assessment in a sphagnum-dominated peatland (Le Forbonnet, Jura Mountains, France): impact of moisture conditions. Biogeochemistry 106:39–52
    11. Domisch T, Fin茅r L, Laine J, Laiho R (2006) Decomposition and nitrogen dynamics of litter in peat soils from two climatic regions under different temperature regimes. Eur J Soil Biol 42(2):74–81
    12. Fenner N, Williams R, Toberman H, Hughes S, Reynolds B, Freeman C (2011) Decomposition ‘hotspots’ in a rewetted peatland: implications for water quality and carbon cycling. Hydrobiologia 674:51–66
    13. Ghani A, Dexter M, KW Perrot (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231-1243
    14. Goering HK, van Soest PJ (1970) Forage fiber analyses (apparatus, reagent, procedure and some applications). In: USDA (ed) Agricultural Handbook 379. U.S. Government Printing Office, Washington, pp 1–19
    15. Gogo S, Shreeve TG, Pearce DME (2010) Geochemistry of three contrasting British peatlands: Complex patterns of cation availability and implications for microbial metabolism. Geoderma 158:207-215
    16. Hartmann M (1999) Species dependent root decomposition in rewetted fen soils. Plant Soil 213:93–98
    17. Haider K (1996) Biochemie des Bodens (Soil Biochemistry). Enke, Stuttgart
    18. H枚per H (2007) Freisetzung von Treibhausgasen aus deutschen Mooren (Release of greenhouse gases out of German peatlands. TELMA 37:85–105 (in German)
    19. Ilnicki P, Zeitz J (2003) Irreversible loss of organic soil functions after reclamation. In: Etienne LE, Ilnicki P (eds) Organic soils and peat materials for sustainable agriculture. CRC Press, Boca Raton, pp 15–32
    20. IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome
    21. Jeschke L (1988) Biotoppflege in Mooren. Ver枚ff Museen Gera Nat Wiss R 15:41–51 (in German)
    22. Joosten H, Clarke D (2002) Wise use of mires and peatlands. International Mire Conservation Group and International Peat Society, Totnes
    23. Kalbitz K (2001) Properties of organic matter in soil solution in a German fen area as dependent on land use and depth. Geoderma 104:203–214
    24. Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen. Biogeochemistry 47:219–238
    25. Kalisz B, Lachacz A, Glaziewski R (2010) Transformation of some organic matter components in organic soils exposed to drainage. Turk J Agric For 34:245–256
    26. Khanna PK, Ludwig B, Bauhus J, O’Hara C (2001) Assessment and significance of labile organic C pools in forest soils. In: Lal R, Kimble JM, Follet RF, Stewart BA (eds) Assessment methods for soil carbon. CRC Press, Boca Raton, pp 167–182
    27. K枚gel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162
    28. Koppisch D (2001) Stickstoff-Umsetzungsprozesse (Processes of N-turnover). In: Succow M, Joosten H (eds) Landschafts枚kologische Moorkunde, 2nd edn. Schweizerbart, Stuttgart, pp 20–22 (in German)
    29. Koster EA, Favier T (2005) Peatlands, past and present. In: Koster EA (ed) The physical geography of Western Europe. Oxford University Press, Oxford, pp 161–182
    30. Kracht O, Gleixner G (2000) Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Org Geochem 31:645–654
    31. Kuntze H, Scheffer B, Richter GM (1988) N-Umsatz in Niedermoorb枚den (N-turnover in fen soils). Nieders盲chsisches Landesamt f眉r Bodenforschung, Hannover (in German)
    32. Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024
    33. Landgraf D, Wedig S, Klose S (2005) Medium- and short-term available organic matter, microbial biomass, and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony, Germany. J Plant Nutr Soil Sci 168:193–201
    34. Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169:76–82
    35. Leinweber P, Schulten HR, K枚rschens M (1995) Hot water extracted organic matter: chemical composition and chemical variations in a long-term field experiment. Biol Fertil Soils 20:17–23
    36. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1379–1419
    37. Malawska M, Ekonomiuk A, Wiłkomirski B (2006) Chemical characteristics of some peatlands in southern Poland. Mires Peat 1:1–14
    38. Moore PD (1989) The ecology of peat-forming processes: a review. Int J Coal Geol 12:89–103
    39. Mueller L, Wirth S, Schulz E, Behrendt A, Hoehn A, Schindler U (2007) Implications of soil substrate and land use for properties of fen soils in North-East Germany Part I: basic soil conditions, chemical and biological properties of topsoils. Arch Agron Soil Sci 53(2):113–126
    40. Oleszczuk R, Regina K, Szajdak L, H枚per H, Maryganova V (2008) Impacts of agricultural utilization of peat soils on the greenhouse gas balance. In: Strack M (ed) Peatlands and climate change. International Peat Society, Jyv盲skyl盲, pp 70–97
    41. Paul EA, Sherri JM, Richard TC, Plante AF (2006) Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools? Soil Sci Soc Am J 70:1023–1035
    42. Plante AF, Fern谩ndez JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43: 1051-1058
    43. Reiche M, Gleixner G, K眉sel K (2010) Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7:187–198
    44. Richert M, Dietrich O, Koppisch D, Roth S (2000) The influence of rewetting on vegetation development and decomposition in a degraded fen. Restor Ecol 8(2):186–195
    45. Rinklebe J, Heinrich K, Neue HU (2001) Der umsetzbare Kohlenstoff als Indikator f眉r die potentielle bodenmikrobielle Aktivit盲t in Auenb枚den. (Readily mineralizable carbon as an indicator for potential soil microbial activity in wetland soils). In: Scholz M, Stab S, Henle K (eds) Indikation in Auen - Pr盲sentation der Ergebnisse aus dem RIVA-Projekt. UFZ-Bericht. Nr. 8/2001, UFZ-Umweltforschungszentrum Leipzig-Halle GmbH. Projektbereich Naturnahe Landschaften und L盲ndliche R盲ume, Leipzig, pp 66–75, in German
    46. Rovira P, Montserrat J, Romany脿 J (2010) Active and passive organic matter fractions in Mediterranean forest soils. Biol Fertil Soils 46:355–369
    47. Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry—a pyrolysis-GC/MS study. Org Geochem 40:678–691
    48. Schultz-Sternberg R, Zeitz J, Landgraf L, Hoffmann E, Lehrkamp H, Luthardt V, K眉hn D (2000) Niedermoore in Brandenburg (Fens in Brandenburg). TELMA 30:140–413 (in German)
    49. Schulz E, Deller B, Hoffman G (2004) Hei脽wasserextrahierbarer Kohlenstoff und Stickstoff. In: VDLUFA (ed) Methodenbuch I. VDLUFA–Verlag, Bonn, in German
    50. Schulz E, K枚rschens M (1998) Characterization of the decomposablae part of soil organic matter (SOM) and transdformation processes by hot water extraction. Eurasian Soil Sci 31(7): 809-813
    51. Silveira ML, Comerford NB, Reddy KR, Cooper WT, El-Rifai H (2006) Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 144:405–414
    52. Šlepetiene A, Šlepetys J, Liaudanskiene I (2010) Chemical composition of differently used terric histosols. Zemdirbyste 97(2):25–32
    53. Sokołowska Z, Szajdak L, Matyka-Sarzyńska D (2005) Impact of the degree of secondary transformation on acid–base properties of organic compounds in mucks. Geoderma 127:80–90
    54. Sparling G, Vojvodic-Vukovic, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biol Biochem 30:1469-1472
    55. Spohn M, Giani L (2007) Total, hot water extractable, and oxidation-resistant carbon in sandy hydromorphic soils—analysis of a 220-year chronosequence. Plant Soil 338:183–192
    56. Strakov谩 P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences 8:2741–2755
    57. Succow M, Joosten H (2001) Hydrogenetische Moortypen (Hydrogenetic mire types). In: Succow M, Joosten H (eds) Landschafts枚kologische Moorkunde, 2nd edn. Schweizerbart, Stuttgart, pp 234–340 (in German)
    58. Succow M, Stegmann H (2001) N盲hrstoff枚kologisch-chemische Kennzeichnung (Nutrientecological-chemical identification). In: Succow M, Joosten H (eds) Landschafts枚kologische Moorkunde, 2nd edn. Schweizerbart, Stuttgart, pp 75–85 (in German)
    59. Szajdak L, Brandyk T, Szatyłowic J (2007) Chemical properties of 741 different peat-moorsh soils from the Biebrza River Valley. Agron 742 Res 5(2):165–174
    60. Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211
    61. Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272
    62. Turetsky MR (2004) Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–750
    63. Updegraf K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northernwetlands. Ecol Appl 5(1):151–163
    64. Vanhala P, Karhu K, Tuomi M, Bj枚rl枚f K, Fritze H, Liski J (2008) Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. Soil Biol Biochem 40:1758–1764
    65. Vitt DH, Wieder RK, Scott KD, Faller S (2009) Decomposition and peat accumulation in rich fens of boreal Alberta, Canada. Ecosystems 12:360–373
    66. von L眉tzow M, K枚gel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207
    67. von Post L (1924) Das genetische System der organogenen Bildungen Schwedens. Comit茅 International de P茅dologie. IV猫me Comm Pour l’Europe 22:287–304 (in German)
    68. Wieder RK, Vitt DH (eds) (2006) Boreal peatland ecosystems. Springer, Berlin
    69. Williams CJ, Yavitt JB (2003) Botanical composition of peat and degree of peat decomposition in three temperate peatlands. Ecoscience 10(1):85–95)
    70. Yanni SF, Whalen JK, Simpson MJ, Janzen HH (2011) Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues. Soil Biol Biochem 43:63-69
    71. Zauft M, Fell H, Gla脽er F, Ro脽kopf N, Zeitz J (2010) Carbon storage in the peatlands of Mecklenburg-Western Pomerania, north-east Germany. Mires Peat 6(4):1–12
    72. Zeitz J, Velty S (2002) Soil properties of drained and rewetted fen soils. J Plant Nutr Soil Sci 165(5):618–626
    73. Zeitz J, Zauft M, Ro脽kopf N (2008) Use of stratigraphic and pedogenetic information for the evaluation of carbon turnover in peatlands. In: Farrell C and Feehan J (eds) Proceedings of 13th International Peat Congress, vol. 1, Tullamore, pp. 653–655
  • 作者单位:1. Faculty of Agriculture and Horticulture, Division of Soil Science and Site Science, Humboldt-Universit盲t zu Berlin, Albrecht-Thaer-Weg 2, 14195 Berlin, Germany
  • ISSN:1614-7480
文摘
Purpose Peatland soils play an important role in the global carbon (C) cycle due to their high organic carbon content. Lowering of the water table e.g. for agricultural use accelerates aerobic secondary peat decomposition and processes of earthification. Peatlands change from C sinks to C sources. We characterized soil organic matter (SOM) with special attention to human impact through drainage. Our aim was to gain knowledge of SOM quality and soil-forming processes in drained fen soils in northeastern Germany.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700