Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics
详细信息    查看全文
  • 作者:Jalil Manafian ; Mehrdad Lakestani
  • 关键词:Improved \(\tan (\varPhi (\xi )/2)\) ; expansion method ; Tzitzéica type nonlinear equation ; Travelling wave ; Periodic function solutions ; Soliton ; like solutions and trigonometric function solutions
  • 刊名:Optical and Quantum Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 全文大小:1,289 KB
  • 参考文献:Abazari, R.: The (G’/G)-expansion method for Tzitzéica type nonlinear evolution equations. Math. Comput. Model. 52, 1834–1845 (2010)CrossRef MathSciNet MATH
    Abdou, M.A., Soliman, A.A., Basyony, S.T.: New application of exp-function method for improved Boussinesq equation. Phys. Lett. A 369, 469–475 (2007)CrossRef ADS MATH
    Abdou, M.A., Soliman, A.A.: Modified extended tanh-function method and its application on nonlinear physical equations. Phys. Lett. A 353, 487–492 (2006)CrossRef ADS
    Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel (G’/G)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23, 020202 (2014)CrossRef
    Borhanifar, A., Moghanlu, A.Z.: Application of the (G’/G )-expansion method for the Zhiber–Shabat equation and other related equations. Math. Comput. Model. 54, 2109–2116 (2011)CrossRef MathSciNet MATH
    Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745–757 (2005)CrossRef ADS MathSciNet MATH
    Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. J. 26, 448–479 (2010)MathSciNet MATH
    Dehghan, M., Manafian, J., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation , which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–1398 (2010)MathSciNet MATH
    Dehghan, M., Manafian Heris, J., Saadatmandi, A.: Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011)CrossRef MathSciNet
    Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method. Z. Naturfor. 64a, 420–430 (2009)ADS
    Ebrahimi Ghogdia, S., Ghomanjani, F., Saberi-Nadjafi, J.: Expansion of the Exp-function method for solving systems of two-dimensional Navier–Stokes equations. J. Taibah Univ. Sci. 9, 121–125 (2015)CrossRef
    El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007)CrossRef ADS MathSciNet MATH
    Gray, P., Scott, S.K.: Chemical Oscillation and Instabilities-Nonlinear Chemical Kinetics. Oxford Science Publications, Clarendon, Oxford (1990)
    Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ.-Sci. 27, 105–112 (2015)CrossRef
    He, J.H.: Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34, 699–708 (1999)CrossRef ADS MATH
    Huber, A.: A note on a class of solitary-like solutions of the Tzitzéica equation generated by a similarity reduction. Phys. D. 237, 1079–1087 (2008)CrossRef MathSciNet MATH
    Jafari, H., Kadem, A., Baleanu, D.: Variational iteration method for a fractional-order Brusselator system. Abstract Appl. Anal. 2014, 1–6 (2014)MathSciNet
    Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)CrossRef MathSciNet MATH
    Kabir, M.M., Khajeh, A.: New explicit solutions for the Vakhnenko and a generalized form of the nonlinear heat conduction equations via exp-function method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1307–1318 (2009)CrossRef
    Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals 22, 395–406 (2004)CrossRef ADS MathSciNet MATH
    Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G’/G)-expansion method. Pramana J. Phys. 4, 1–22 (2015a)
    Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015b) CrossRef
    Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 107978 (2015c). doi:10.​1155/​2015/​107978 CrossRef
    Manafian, J., Lakestani, M.: Application of \(tan(\phi /2)\) -expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik-Int. J. Light Electron Opt. 127, 2040–2054 (2016)CrossRef
    Manafian Heris, J., Lakestani, M.: Solitary wave and periodic wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized tanh-coth method. Commun. Numer. Anal. 2013, 1–18 (2013)CrossRef MathSciNet
    Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2+1)-dimensional zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 1, 1–26 (2015). doi:10.​1007/​s40819-015-0058-2 CrossRef
    Mikhailov, A.V.: The reduction problem and the inverse scattering method. Physica 3D(2), 73–117 (1910)ADS
    Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Some relatively new techniques for nonlinear problems. Math. Problems Eng. 2009, 1–26 (2009). doi:10.​1155/​2009/​234849 . Article ID 234849
    Mohyud-Din, S.T., Noor, M.A., Asif, W.: Exp-function method for generalized traveling solutions of Calogero-Degasperis-Fokas equation. Z. Naturfor. A 65a, 78–84 (2010)ADS
    Mohyud-Din, S.T., Yildirim, A., Sezer, S.A.: Numerical soliton solutions of the improved Boussinesq equation. Int. J. Numer. Methods Heat Fluid Flow 21, 822–827 (2011)CrossRef MathSciNet
    Mohyud-Din, S.T., Yildirim, A., Sariaydin, S.: Numerical soliton solution of the Kaup-Kupershmidt equation. Int. J. Numer. Methods Heat Fluid Flow 21, 272–281 (2011)CrossRef MathSciNet MATH
    Mohyud-Din, S.T., Khan, Y., Naeem, F., Yildirim, A.: Exp-function method for solitary and periodic solutions of Fitzhugh Nagumo equations. Int. J. Numer. Methods Heat Fluid Flow 22, 335–341 (2012)CrossRef
    Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013). doi:10.​1063/​1.​4804433 CrossRef ADS
    Naher, H., Abdullah, F.A.: New approach of (G’/G)-expansion method and new approach of generalized (G’/G)-expansion method for nonlinear evolution equation. AIP Adv. 3, 032116 (2013). doi:10.​1063/​1.​4794947 CrossRef ADS
    Noor, M.A., Mohyud-Din, S.T., Asif, W.: Exp-function method for generalized traveling solutions of master partial differential equations. Acta Appl. Math. 104, 131–137 (2008)CrossRef MathSciNet MATH
    Noor, M.A., Mohyud-Din, S.T., Asif, W., Eisa, A.A.S.: Exp-function method for traveling wave solutions of nonlinear evolution equations. Appl. Math. Comput. 216, 477–483 (2010)CrossRef MathSciNet MATH
    Roshid, O.R., Rahman, M.A.: The exp(-\(\Phi (\xi )\) )-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014)CrossRef
    Saba, F., Jabeen, S., Akbar, H., Tauseef Mohyud-Din, S.: Modified alternative (G’/G)-expansion method to general Sawada–Kotera equation of fifth-order. J. Egypt. Math. Soc. 23, 416–423 (2015)CrossRef
    Tzitzéica, G.: Géometric infinitésimale-sur une nouvelle classe de surface. C. R. Math. Acad. Sci. Paris 150, 227–232 (1910)
    Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzéica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)CrossRef ADS MathSciNet MATH
    Wazwaz, A.M.: Travelling wave solutions for combined and double combined sine–cosine–Gordon equations by the variable separated ODE method. Appl. Math. Comput. 177, 755–760 (2006)CrossRef MathSciNet MATH
    Yildirim, A., Pinar, Z.: Application of the exp-function method for solving nonlinear reaction-diffusion equations arising in mathematical biology. Comput. Math. Appl. 60, 1873–1880 (2010)CrossRef MathSciNet MATH
    Zhang, X., Zhao, J., Liu, J., Tang, B.: Homotopy perturbation method for two dimensional time-fractional wave equation. Appl. Math. Model. 38, 5545–5552 (2014)CrossRef MathSciNet
    Zhao, X., Wang, L., Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solitons Fractals 28, 448–453 (2006)CrossRef ADS MathSciNet MATH
  • 作者单位:Jalil Manafian (1)
    Mehrdad Lakestani (1)

    1. Department of Applied Mathematics, Faculty of Mathematics Science, University of Tabriz, Tabriz, Islamic Republic of Iran
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
A improvement of the expansion methods namely the improved \(\tan \left( \varPhi (\xi )/2\right)\)-expansion method for solving the Tzitzéica type nonlinear evolution equations is proposed. In this work, the dispersive optical solitons that are governed by the Tzitzéica type nonlinear evolution equations. As a result, many new and more general exact travelling wave solutions are obtained including periodic function solutions, soliton-like solutions and trigonometric function solutions. The exact particular solutions containing four types hyperbolic function solution, trigonometric function solution, exponential solution and rational solution. We obtained the further solutions comparing with other methods. Recently this method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering fields. It is shown that this method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving the nonlinear problems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700