Biomass Production and Composition of Perennial Grasses Grown for Bioenergy in a Subtropical Climate Across Florida, USA
详细信息    查看全文
  • 作者:Jeffrey R. Fedenko (1)
    John E. Erickson (1)
    Kenneth R. Woodard (1)
    Lynn E. Sollenberger (1)
    Joao M. B. Vendramini (2)
    Robert. A. Gilbert (3)
    Zane R. Helsel (3)
    Gary F. Peter (4)
  • 关键词:Elephantgrass ; Energycane ; Arundo ; Fiber composition ; Biofuel ; Marginal land
  • 刊名:BioEnergy Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:6
  • 期:3
  • 页码:1082-1093
  • 全文大小:255KB
  • 参考文献:1. Anderson WF, Casler MD, Baldwin BS (2008) Improvement of perennial forage species as feedstock for bioenergy. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science-?Business Media, New York, pp 347-76 CrossRef
    2. Angelini LG, Ceccarini L, Bonari E (2005) Biomass yield and energy balance of giant reed ( / Arundo donax L.) cropped in central Italy as related to different management practices. Eur J Agron 22:375-89 CrossRef
    3. Bi C, Rice JD, Preston JF (2009) Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by / Enterobacter asburiae strain JDR-1. Appl Environ Microbiol 75:395-04 CrossRef
    4. Bi C, Zhang X, Ingram LO, Preston JF (2009) Genetic engineering of / Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates. Appl Environ Microbiol 75:5743-749 CrossRef
    5. Bischoff KP, Gravois KA, Reagan TE, Hoy JW, Kimbeng CA, LaBorde CM, Hawkins GL (2008) Registration of ‘L 79-1002-sugarcane. J Plant Regist 2:211-17 CrossRef
    6. Byrt CS, Grof CPL, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120-35 CrossRef
    7. Caicedo HM, Dempere LA, Vermerris W (2012) Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires. Nanotechnology 23:105605 CrossRef
    8. Chang CW, Yu WC, Chen WJ, Chang RF, Kao WS (2011) A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis. J Taiwan Inst Chem Eng 42:889-94 CrossRef
    9. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759-61 CrossRef
    10. Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP (2006) Variation of S/G ratio and lignin content in / Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 129-32:427-35 CrossRef
    11. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by / Saccharomyces cerevisiae, / Zymomonas mobilis, / Pichia stipitis, and / Candida shehatae. Enzyme Microb Technol 19:220-25 CrossRef
    12. de Morais RF, de Souza BJ, Leite JM, de Barros Soares LH, Alves BJR, Boddey RM, Urquiaga S (2009) Elephantgrass genotypes for bioenergy production by direct biomass combustion. Pesq Agrop Brasileira 44:133-40
    13. EISA (2007) Energy Independence and Security Act of 2007. Public Law 110-40. 121 Stat. 1492. 19 Dec. 2007, vol 121
    14. Erickson JE, Helsel ZR, Woodard KR, Vendramini JMB, Wang Y, Sollenberger LE, Gilbert RA (2011) Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agron J 103:1827-833 CrossRef
    15. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. PNAS 108:3803-808 CrossRef
    16. Gilbert RA, Shine JM, Miller JD, Rice RW, Rainbolt CR (2006) The effect of genotype, environment and time of harvest on sugarcane yields in Florida, USA. Field Crop Res 95:156-70 CrossRef
    17. Glover JD, Culman S, DuPont ST, Broussard W, Young LM, Mangan M, Mai J, Crews TE, DeHann L, Buckly D, Ferris H, Turner RE, Reynolds HL, Wyse DL (2009) SYMP 9-4: perennial grasslands as benchmarks for agricultural sustainability. In The 94th ESA Annual Meeting
    18. Guretzky JA, Biermacher JT, Cook BJ, Kering MK, Mosali J (2011) Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 339:69-1 CrossRef
    19. Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549-56 CrossRef
    20. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14:2000-014 CrossRef
    21. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15-2 CrossRef
    22. Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2012) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenerg Res 5:61-0 CrossRef
    23. Knoll JE, Anderson WF, Strickland TC, Hubbard RK, Malik R (2012) Low-input production of biomass from perennial grasses in the coastal plain of Georgia, USA. Bioenerg Res 5:206-14 CrossRef
    24. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335-61 CrossRef
    25. Maiorella B, Blanch HW, Wilke CR (1983) By–product inhibition effects on ethanolic fermentation by / Saccharomyces cerevisiae. Biotechnol Bioeng 25:103-21
    26. McLaughlin SB, Kszos LA (2005) Development of switchgrass ( / Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515-35 CrossRef
    27. Mendu V, Shearin T, Campbell JE Jr, Stork J, Jae J, Crocker M, Huber G, DeBolt S (2012) Global bioenergy potential from high-lignin agricultural residue. PNAS 109:4014-019 CrossRef
    28. Mislevy P, Martin FG, Adjei MB, Miller JD (1997) Harvest management effects on quantity and quality of / Erianthus plant morphological components. Biomass Bioenergy 13:51-8 CrossRef
    29. Mislevy P, Kalmbacher RS, Overman AJ, Martin FG (1986) Effect of fertilizer and nematicide treatments on crops grown for biomass. Biomass 11:243-53 CrossRef
    30. Ohta K, Alterthum F, Ingram LO (1990) Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl Environ Microbiol 56:463-65
    31. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, and Erbach, DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab, TN
    32. Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yields during the first two years. Agron J 102:806-14 CrossRef
    33. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484-89 CrossRef
    34. Sami M, Annamalai K, Wooldridge M (2001) Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci 27:171-14 CrossRef
    35. Sanderson MA, Brink GE, Higgins KF, Naugle DE (2004) Alternative uses of warm-season forage grasses. In: Moser LE et al (eds) Warm-season (C4) grasses. ASA/CSSA/SSSA, Madison, WI, pp 389-16
    36. SAS Institute, Inc. (2009) The SAS system for Windows. Ver. 9.2. SAS Inst., Cary, NC
    37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass; laboratory analytical procedure. In: DOE (ed) National Renewable Energy Laboratory, p 16
    38. S?derstr?m J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475-86 CrossRef
    39. Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790-92 CrossRef
    40. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural / Populus variants affects sugar release. PNAS 108:6300-305 CrossRef
    41. Thai Hoa D, Man TD, Hau NG (2008) Pretreatment of lignocellulosic biomass for enzymatic hydrolysis. ASEAN J Sci Technol Dev 25:341-46
    42. Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M (2011) Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of / Miscanthus x giganteus lignins. Polym Degrad Stab 96:1761-770 CrossRef
    43. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153 CrossRef
    44. Walter A, Ensinas AV (2010) Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 35:874-79 CrossRef
    45. Woodard KR, Prine GM (1993) Dry matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818-24 CrossRef
    46. Woodard KR, Prine GM (1991) Forage yield and nutritive value of elephantgrass as affected by harvest frequency and genotype. Agron J 83:541-46 CrossRef
  • 作者单位:Jeffrey R. Fedenko (1)
    John E. Erickson (1)
    Kenneth R. Woodard (1)
    Lynn E. Sollenberger (1)
    Joao M. B. Vendramini (2)
    Robert. A. Gilbert (3)
    Zane R. Helsel (3)
    Gary F. Peter (4)

    1. Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL, 32611, USA
    2. Range Cattle Research & Education Center, University of Florida, 3401 Experiment Station Road, Ona, Gainesville, FL, 33865, USA
    3. Everglades Research & Education Center, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430, USA
    4. School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
文摘
Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50?Mg?ha? and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25?Mg?ha?) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356?mg?g?), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285?mg?g?) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700