PyTMs: a useful PyMOL plugin for modeling common post-translational modifications
详细信息    查看全文
  • 作者:Andreas Warnecke (1)
    Tatyana Sandalova (2)
    Adnane Achour (2)
    Robert A Harris (1)

    1. Department of Clinical Neuroscience
    ; Karolinska Institutet ; Center for Molecular Medicine ; Applied Immunology & Immunotherapy ; L8 ; 04 ; Karolinska Hospital ; SE-171 76 ; Stockholm ; Sweden
    2. Department of Medicine Solna
    ; Science for Life Laboratory ; Karolinska Institutet ; Stockholm ; Sweden
  • 关键词:Post ; translational modifications ; PyMOL plugin ; Structural bioinformatics ; Modeling ; Acetylation ; Carbamylation ; Citrullination ; Oxidations ; Malondialdehyde adducts ; Nitration
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,874 KB
  • 参考文献:1. Bischoff, R, Schluter, H (2012) Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J Proteomics 75: pp. 2275-2296 CrossRef
    2. Butterfield, DA, Gu, L, Domenico, F, Robinson, RA (2014) Mass spectrometry and redox proteomics: applications in disease. Mass Spectrom Rev 33: pp. 277-301 CrossRef
    3. Anderton, SM (2004) Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 16: pp. 753-758 CrossRef
    4. Doyle, HA, Mamula, MJ (2005) Posttranslational modifications of self-antigens. Ann N Y Acad Sci 1050: pp. 1-9 CrossRef
    5. Harris, RA, Amor, S (2011) Sweet and sour - oxidative and carbonyl stress in neurological disorders. Cns Neurol Disord Dr 10: pp. 82-107 CrossRef
    6. Jones, LH (2012) Chemistry and biology of biomolecule nitration. Chem Biol 19: pp. 1086-1092 CrossRef
    7. Nagaraj, S, Gupta, K, Pisarev, V, Kinarsky, L, Sherman, S, Kang, L, Herber, DL, Schneck, J, Gabrilovich, DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13: pp. 828-835 CrossRef
    8. He, XL, Radu, C, Sidney, J, Sette, A, Ward, ES, Garcia, KC (2002) Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au. Immunity 17: pp. 83-94 CrossRef
    9. Wang, Z, Nicholls, SJ, Rodriguez, ER, Kummu, O, Horkko, S, Barnard, J, Reynolds, WF, Topol, EJ, DiDonato, JA, Hazen, SL (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13: pp. 1176-1184 CrossRef
    10. Freeman, TL, Haver, A, Duryee, MJ, Tuma, DJ, Klassen, LW, Hamel, FG, White, RL, Rennard, SI, Thiele, GM (2005) Aldehydes in cigarette smoke react with the lipid peroxidation product malonaldehyde to form fluorescent protein adducts on lysines. Chem Res Toxicol 18: pp. 817-824 CrossRef
    11. McCaskill, ML, Kharbanda, KK, Tuma, DJ, Reynolds, JD, DeVasure, JM, Sisson, JH, Wyatt, TA (2011) Hybrid malondialdehyde and acetaldehyde protein adducts form in the lungs of mice exposed to alcohol and cigarette smoke. Alcohol Clin Exp Res 35: pp. 1106-1113 CrossRef
    12. Souza, JM, Peluffo, G, Radi, R (2008) Protein tyrosine nitration鈥揻unctional alteration or just a biomarker?. Free Radic Biol Med 45: pp. 357-366 CrossRef
    13. Ohmori, H, Kanayama, N (2005) Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun Rev 4: pp. 224-229 CrossRef
    14. Castro, L, Demicheli, V, Tortora, V, Radi, R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45: pp. 37-52 CrossRef
    15. Weismann, D, Hartvigsen, K, Lauer, N, Bennett, KL, Scholl, HP, Charbel Issa, P, Cano, M, Brandstatter, H, Tsimikas, S, Skerka, C, Superti-Furga, G, Handa, JT, Zipfel, PF, Witztum, JL, Binder, CJ (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478: pp. 76-81 CrossRef
    16. Weismann, D, Binder, CJ (2012) The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta 1818: pp. 2465-2475 CrossRef
    17. Wang, C, Turunen, SP, Kummu, O, Veneskoski, M, Lehtimaki, J, Nissinen, AE, Horkko, S (2013) Natural antibodies of newborns recognize oxidative stress-related malondialdehyde acetaldehyde adducts on apoptotic cells and atherosclerotic plaques. Int Immunol 25: pp. 575-587 CrossRef
    18. Cherukuri, A, Cheng, PC, Pierce, SK (2001) The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 167: pp. 163-172 CrossRef
    19. Willis, MS, Klassen, LW, Tuma, DJ, Sorrell, MF, Thiele, GM (2002) Adduction of soluble proteins with malondialdehyde-acetaldehyde (MAA) induces antibody production and enhances T-cell proliferation. Alcohol Clin Exp Res 26: pp. 94-106 CrossRef
    20. Willis, MS, Thiele, GM, Tuma, DJ, Klassen, LW (2003) T cell proliferative responses to malondialdehyde鈥揳cetaldehyde haptenated protein are scavenger receptor mediated. Int Immunopharmacol 3: pp. 1381-1399 CrossRef
    21. Wallberg, M, Bergquist, J, Achour, A, Breij, E, Harris, RA (2007) Malondialdehyde modification of myelin oligodendrocyte glycoprotein leads to increased immunogenicity and encephalitogenicity. Eur J Immunol 37: pp. 1986-1995 CrossRef
    22. Gonzalo, H, Brieva, L, Tatzber, F, Jov茅, M, Cacabelos, D, Cassany茅, A, Lanau-Angulo, L, Boada, J, Serrano, JC, Gonz谩lez, C, Hern谩ndez, L, Peralta, S, Pamplona, R, Portero-Otin, M (2012) Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 123: pp. 622-634 CrossRef
    23. Ferretti, G, Bacchetti, T (2011) Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci 311: pp. 92-97 CrossRef
    24. Madhurantakam, C, Duru, AD, Sandalova, T, Webb, JR, Achour, A (2012) Inflammation-associated nitrotyrosination affects TCR recognition through reduced stability and alteration of the molecular surface of the MHC complex. PLoS One 7: pp. e32805 CrossRef
    25. Scally, SW, Petersen, J, Law, SC, Dudek, NL, Nel, HJ, Loh, KL, Wijeyewickrema, LC, Eckle, SB, Heemst, J, Pike, RN, McCluskey, J, Toes, RE, La Gruta, NL, Purcell, AW, Reid, HH, Thomas, R, Rossjohn, J (2013) A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 210: pp. 2569-2582 CrossRef
    26. Nagata, K, Randall, A, Baldi, P (2014) Incorporating post-translational modifications and unnatural amino acids into high-throughput modeling of protein structures. Bioinformatics 30: pp. 1681-1689 CrossRef
    27. Hornbeck, PV, Kornhauser, JM, Tkachev, S, Zhang, B, Skrzypek, E, Murray, B, Latham, V, Sullivan, M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40: pp. D261-D270 CrossRef
    28. Zhao, S, Xu, W, Jiang, W, Yu, W, Lin, Y, Zhang, T, Yao, J, Zhou, L, Zeng, Y, Li, H, Li, Y, Shi, J, An, W, Hancock, SM, He, F, Qin, L, Chin, J, Yang, P, Chen, X, Lei, Q, Xiong, Y, Guan, KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: pp. 1000-1004 CrossRef
    29. Choudhary, C, Kumar, C, Gnad, F, Nielsen, ML, Rehman, M, Walther, TC, Olsen, JV, Mann, M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: pp. 834-840 CrossRef
    30. Kolbe, K, Schonherr, R, Gessner, G, Sahoo, N, Hoshi, T, Heinemann, SH (2010) Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels. J Physiol 588: pp. 2999-3009 CrossRef
    31. Tuma, DJ, Thiele, GM, Xu, D, Klassen, LW, Sorrell, MF (1996) Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology 23: pp. 872-880 CrossRef
    32. Tuma, DJ, Kearley, ML, Thiele, GM, Worrall, S, Haver, A, Klassen, LW, Sorrell, MF (2001) Elucidation of reaction scheme describing malondialdehyde鈥夆垝鈥塧cetaldehyde鈥夆垝鈥塸rotein adduct formation. Chem Res Toxicol 14: pp. 822-832 CrossRef
    33. Slatter, DA, Murray, M, Bailey, AJ (1998) Formation of a dihydropyridine derivative as a potential cross-link derived from malondialdehyde in physiological systems. FEBS Lett 421: pp. 180-184 CrossRef
    34. Itakura, K, Uchida, K, Osawa, T (1996) A novel fluorescent malondialdehyde-lysine adduct. Chem Phys Lipids 84: pp. 75-79 CrossRef
    35. Uchida, K, Sakai, K, Itakura, K, Osawa, T, Toyokuni, S (1997) Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch Biochem Biophys 346: pp. 45-52 CrossRef
    36. Uchida, K (2006) Lipofuscin-like fluorophores originated from malondialdehyde. Free Radic Res 40: pp. 1335-1338 CrossRef
    37. Levine, RL, Moskovitz, J, Stadtman, ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50: pp. 301-307 CrossRef
    38. Moskovitz, J, Singh, VK, Requena, J, Wilkinson, BJ, Jayaswal, RK, Stadtman, ER (2002) Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun 290: pp. 62-65 CrossRef
    39. Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A: Histone lysine methylation and chromatin replication. / Biochim Biophys Acta 2014, (0): doi:10.1016/j.bbagrm.2014.03.009. [Epub ahead of print].
    40. Van den Steen, PE, Proost, P, Grillet, B, Brand, DD, Kang, AH, Damme, J, Opdenakker, G (2002) Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J 16: pp. 379-389 CrossRef
    41. Ivan, M, Kondo, K, Yang, H, Kim, W, Valiando, J, Ohh, M, Salic, A, Asara, JM, Lane, WS, Kaelin, WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: pp. 464-468 CrossRef
    42. Lee, I, Huttemann, M (2014) Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842: pp. 1579-1586 CrossRef
    43. Corpas, FJ, Leterrier, M, Begara-Morales, JC, Valderrama, R, Chaki, M, Lopez-Jaramillo, J, Luque, F, Palma, JM, Padilla, MN, S谩nchez-Calvo, B, Mata-P茅rez, C, Barroso, JB (2013) Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim Biophys Acta 1830: pp. 4981-4989 CrossRef
    44. Bordoli, L, Kiefer, F, Arnold, K, Benkert, P, Battey, J, Schwede, T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4: pp. 1-13 CrossRef
    45. Zagotta, WN, Olivier, NB, Black, KD, Young, EC, Olson, R, Gouaux, E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425: pp. 200-205 CrossRef
    46. Su, Z, Limberis, J, Martin, RL, Xu, R, Kolbe, K, Heinemann, SH, Hoshi, T, Cox, BF, Gintant, GA (2007) Functional consequences of methionine oxidation of hERG potassium channels. Biochem Pharmacol 74: pp. 702-711 CrossRef
    47. Monteiro, HP, Arai, RJ, Travassos, LR (2008) Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal 10: pp. 843-889 CrossRef
    48. Dugave, C, Demange, L (2003) Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 103: pp. 2475-2532 CrossRef
    49. Wang, K, Wang, Y, Yao, M, Xu, D (2013) Diethyl 4-(2-meth-oxy-phen-yl)-2,6-di-methyl-1,4-di-hydro-pyridine-3,5-di-carboxyl-ate. Acta Crystallogr Sect E Struct Rep Online 69: pp. o785 CrossRef
    50. Baker, NA, Sept, D, Joseph, S, Holst, MJ, McCammon, JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: pp. 10037-10041 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Post-translational modifications (PTMs) constitute a major aspect of protein biology, particularly signaling events. Conversely, several different pathophysiological PTMs are hallmarks of oxidative imbalance or inflammatory states and are strongly associated with pathogenesis of autoimmune diseases or cancers. Accordingly, it is of interest to assess both the biological and structural effects of modification. For the latter, computer-based modeling offers an attractive option. We thus identified the need for easily applicable modeling options for PTMs. Results We developed PyTMs, a plugin implemented with the commonly used visualization software PyMOL. PyTMs enables users to introduce a set of common PTMs into protein/peptide models and can be used to address research questions related to PTMs. Ten types of modification are currently supported, including acetylation, carbamylation, citrullination, cysteine oxidation, malondialdehyde adducts, methionine oxidation, methylation, nitration, proline hydroxylation and phosphorylation. Furthermore, advanced settings integrate the pre-selection of surface-exposed atoms, define stereochemical alternatives and allow for basic structure optimization of the newly modified residues. Conclusion PyTMs is a useful, user-friendly modelling plugin for PyMOL. Advantages of PyTMs include standardized generation of PTMs, rapid time-to-result and facilitated user control. Although modeling cannot substitute for conventional structure determination it constitutes a convenient tool that allows uncomplicated exploration of potential implications prior to experimental investments and basic explanation of experimental data. PyTMs is freely available as part of the PyMOL script repository project on GitHub and will further evolve. Graphical Abstract PyTMs is a useful PyMOL plugin for modeling common post-translational modifications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700