Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis
详细信息    查看全文
  • 作者:Simon Kebede Merid (3) (4)
    Daria Goranskaya (5) (6)
    Andrey Alexeyenko (7)

    3. Master program in Bioinformatics at Department of Biochemistry and Biophysics
    ; Science for Life Laboratory ; Stockholm University ; Box 1031 ; 171 21 ; Solna ; Sweden
    4. Institute of Environmental Medicine
    ; Karolinska Institutet ; Box 210 ; SE ; 171 77 ; Stockholm ; Sweden
    5. Department of Biochemistry and Biophysics
    ; Science for Life Laboratory ; Stockholm University ; Box 1031 ; 171 21 ; Solna ; Sweden
    6. Max Planck Institute for Human Cognitive and Brain Sciences
    ; Stephanstra脽e 1a ; 04103 ; Leipzig ; Germany
    7. Department of Microbiology
    ; Tumour and Cell biology ; Bioinformatics Infrastructure for Life Sciences ; Science for Life Laboratory ; Karolinska Institutet ; 17177 ; Stockholm ; Sweden
  • 关键词:Driver mutations ; Passenger mutations ; Somatic mutations ; Copy number alterations ; Gene networks ; Network analysis ; Cancer ; Glioblastoma ; Ovarian carcinoma ; Brain cell compaction ; Collagen cross ; linking
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,660 KB
  • 参考文献:1. Sj枚blom, T, Jones, S, Wood, LD, Parsons, DW, Lin, J, Barber, TD, Mandelker, D, Leary, RJ, Ptak, J, Silliman, N, Szabo, S, Buckhaults, P, Farrell, C, Meeh, P, Markowitz, SD, Willis, J, Dawson, D, Willson, JK, Gazdar, AF, Hartigan, J, Wu, L, Liu, C, Parmigiani, G, Park, BH, Bachman, KE, Papadopoulos, N, Vogelstein, B, Kinzler, KW, Velculescu, VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: pp. 268-274 CrossRef
    2. Greenman, C, Stephens, P, Smith, R, Dalgliesh, GL, Hunter, C, Bignell, G, Davies, H, Teague, J, Butler, A, Stevens, C, Edkins, S, O鈥橫eara, S, Vastrik, I, Schmidt, EE, Avis, T, Barthorpe, S, Bhamra, G, Buck, G, Choudhury, B, Clements, J, Cole, J, Dicks, E, Forbes, S, Gray, K, Halliday, K, Harrison, R, Hills, K, Hinton, J, Jenkinson, A, Jones, D (2007) Patterns of somatic mutation in human cancer genomes. Nature 446: pp. 153-158 CrossRef
    3. Ding, L, Getz, G, Wheeler, DA, Mardis, ER, McLellan, MD, Cibulskis, K, Sougnez, C, Greulich, H, Muzny, DM, Morgan, MB, Fulton, L, Fulton, RS, Zhang, Q, Wendl, MC, Lawrence, MS, Larson, DE, Chen, K, Dooling, DJ, Sabo, A, Hawes, AC, Shen, H, Jhangiani, SN, Lewis, LR, Hall, O, Zhu, Y, Mathew, T, Ren, Y, Yao, J, Scherer, SE, Clerc, K (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: pp. 1069-1075 CrossRef
    4. Jones, S, Zhang, X, Parsons, DW, Lin, JC, Leary, RJ, Angenendt, P, Mankoo, P, Carter, H, Kamiyama, H, Jimeno, A, Hong, SM, Fu, B, Lin, MT, Calhoun, ES, Kamiyama, M, Walter, K, Nikolskaya, T, Nikolsky, Y, Hartigan, J, Smith, DR, Hidalgo, M, Leach, SD, Klein, AP, Jaffee, EM, Goggins, M, Maitra, A, Iacobuzio-Donahue, C, Eshleman, JR, Kern, SE, Hruban, RH (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: pp. 1801-1806 CrossRef
    5. Parsons, DW, Jones, S, Zhang, X, Lin, JC, Leary, RJ, Angenendt, P, Mankoo, P, Carter, H, Siu, IM, Gallia, GL, Olivi, A, McLendon, R, Rasheed, BA, Keir, S, Nikolskaya, T, Nikolsky, Y, Busam, DA, Tekleab, H, Diaz, LA, Hartigan, J, Smith, DR, Strausberg, RL, Marie, SK, Shinjo, SM, Yan, H, Riggins, GJ, Bigner, DD, Karchin, R, Papadopoulos, N, Parmigiani, G (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: pp. 1807-1812 CrossRef
    6. Huang, S, Ernberg, I, Kauffman, S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20: pp. 869-876 CrossRef
    7. Krause, DS, Van Etten, RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353: pp. 172-187 CrossRef
    8. Nelander, S, Wang, W, Nilsson, B, She, Q-B, Pratilas, C, Rosen, N, Gennemark, P, Sander, C (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4: pp. 1
    9. Basanta, D, Gatenby, RA, Anderson, AR (2012) Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol Pharm 9: pp. 914-921 CrossRef
    10. Lee, MJ, Ye, AS, Gardino, AK, Heijink, AM, Sorger, PK, MacBeath, G, Yaffe, MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149: pp. 780-794 CrossRef
    11. Kraggerud, SM, Hoei-Hansen, CE, Alagaratnam, S, Skotheim, RI, Abeler, VM, Rajpert-De Meyts, E, Lothe, RA (2013) Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr Rev 34: pp. 339-376 CrossRef
    12. Carter, H, Chen, S, Isik, L, Tyekucheva, S, Velculescu, VE, Kinzler, KW, Vogelstein, B, Karchin, R (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69: pp. 6660-6667 CrossRef
    Integrated genomic analyses of ovarian carcinoma. Nature 474: pp. 609-615 CrossRef
    13. Cerutti, P, Hussain, P, Pourzand, C, Aguilar, F (1994) Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res 54: pp. 1934s-1938s
    14. Stephens, PJ, McBride, DJ, Lin, ML, Varela, I, Pleasance, ED, Simpson, JT, Stebbings, LA, Leroy, C, Edkins, S, Mudie, LJ, Greenman, CD, Jia, M, Latimer, C, Teague, JW, Lau, KW, Burton, J, Quail, MA, Swerdlow, H, Churcher, C, Natrajan, R, Sieuwerts, AM, Martens, JW, Silver, DP, Langer酶d, A, Russnes, HE, Foekens, JA, Reis-Filho, JS, Van 鈥榯 Veer, L, Richardson, AL, B酶rresen-Dale, AL (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462: pp. 1005-1010 CrossRef
    15. Kaminker, JS, Zhang, Y, Watanabe, C, Zhang, Z (2007) Canpredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Res 35: pp. W595-W598 CrossRef
    16. Torkamani, A, Schork, NJ (2008) Prediction of cancer driver mutations in protein kinases. Cancer Res 68: pp. 1675-1682 CrossRef
    17. Leary, RJ, Lin, JC, Cummins, J, Boca, S, Wood, LD, Parsons, DW, Jones, S, Sj枚blom, T, Park, BH, Parsons, R, Willis, J, Dawson, D, Willson, JK, Nikolskaya, T, Nikolsky, Y, Kopelovich, L, Papadopoulos, N, Pennacchio, LA, Wang, TL, Markowitz, SD, Parmigiani, G, Kinzler, KW, Vogelstein, B, Velculescu, VE (2008) Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A 105: pp. 16224-16229 CrossRef
    18. Vogelstein, B, Papadopoulos, N, Velculescu, VE, Zhou, S, Diaz, LA, Kinzler, KW (2013) Cancer genome landscapes. Science 339: pp. 1546-1558 CrossRef
    19. Akavia, UD, Litvin, O, Kim, J, Sanchez-Garcia, F, Kotliar, D, Causton, HC, Pochanard, P, Mozes, E, Garraway, LA, Pe鈥檈r, D (2010) An integrated approach to uncover drivers of cancer. Cell 143: pp. 1005-1017 CrossRef
    20. Beroukhim, R, Getz, G, Nghiemphu, L, Barretina, J, Hsueh, T, Linhart, D, Vivanco, I, Lee, JC, Huang, JH, Alexander, S, Du, J, Kau, T, Thomas, RK, Shah, K, Soto, H, Perner, S, Prensner, J, Debiasi, RM, Demichelis, F, Hatton, C, Rubin, MA, Garraway, LA, Nelson, SF, Liau, L, Mischel, PS, Cloughesy, TF, Meyerson, M, Golub, TA, Lander, ES, Mellinghoff, IK (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104: pp. 20007-20012 CrossRef
    21. Ciriello, G, Miller, ML, Aksoy, BA, Senbabaoglu, Y, Schultz, N, Sander, C (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45: pp. 1127-1133 CrossRef
    International network of cancer genome projects. Nature 464: pp. 993-998 CrossRef
    22. Ideker, T, Sharan, R (2008) Protein networks in disease. Genome Res 18: pp. 644-652 CrossRef
    23. Alexeyenko, A, Sonnhammer, EL (2009) Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res 19: pp. 1107-1116 CrossRef
    Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: pp. 1061-1068 CrossRef
    24. Torkamani, A, Schork, NJ (2009) Identification of rare cancer driver mutations by network reconstruction. Genome Res 19: pp. 1570-1578 CrossRef
    25. Cerami, E, Demir, E, Schultz, N, Taylor, BS, Sander, C (2010) Automated network analysis identifies core pathways in glioblastoma. PLoS One 5: pp. e8918 CrossRef
    26. Ciriello, G, Cerami, E, Sander, C, Schultz, N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22: pp. 398-406 CrossRef
    27. Gu, Y, Wang, H, Qin, Y, Zhang, Y, Zhao, W, Qi, L, Zhang, Y, Wang, C, Guo, Z (2013) Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma. Mol BioSyst 9: pp. 467-477 CrossRef
    28. Babaei, S, Hulsman, M, Reinders, M, de Ridder, J (2013) Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion. BMC Bioinformatics 14: pp. 29 CrossRef
    29. Alexeyenko, A, Lee, W, Pernemalm, M, Guegan, J, Dessen, P, Lazar, V, Lehti枚, J, Pawitan, Y (2012) Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC Bioinformatics 13: pp. 226 CrossRef
    30. Alexeyenko, A, Wassenberg, DM, Lobenhofer, EK, Yen, J, Linney, E, Sonnhammer, ELL, Meyer, JN (2010) Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity. PLoS One 5: pp. e10465 CrossRef
    31. McCormack, T, Frings, O, Alexeyenko, A, Sonnhammer, EL (2013) Statistical assessment of crosstalk enrichment between gene groups in biological networks. PLoS One 8: pp. e54945 CrossRef
    32. Reynolds, CA, Hong, MG, Eriksson, UK, Blennow, K, Wiklund, F, Johansson, B, Malmberg, B, Berg, S, Alexeyenko, A, Gr枚nberg, H, Gatz, M, Pedersen, NL, Prince, JA (2011) Genetic association of sequence variants near AGER/NOTCH4 and dementia. J Alzheimers Dis 24: pp. 475-484
    33. Hong, MG, Alexeyenko, A, Lambert, JC, Amouyel, P, Prince, JA (2010) Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J Hum Genet 55: pp. 707-709 CrossRef
    34. Bennet, AM, Reynolds, CA, Eriksson, UK, Hong, MG, Blennow, K, Gatz, M, Alexeyenko, A, Pedersen, NL, Prince, JA (2011) Genetic association of sequence variants near AGER/NOTCH4 and dementia. J Alzheimers Dis 24: pp. 475-484
    35. Navlakha, S, Kingsford, C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26: pp. 1057-1063 CrossRef
    36. Jansen, R, Yu, H, Greenbaum, D, Kluger, Y, Krogan, NJ, Chung, S, Emili, A, Snyder, M, Greenblatt, JF, Gerstein, M (2003) Bayesian networks approach for predicting protein鈥損rotein interactions from genomic data. Science 302: pp. 449-453 CrossRef
    37. Troyanskaya, OL, Dolinski, K, Owen, AB, Altman, RB, Botstein, DA (2003) Bayesian network for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci 100: pp. 8348-8353 CrossRef
    38. Lee, I, Date, SV, Adai, AT, Marcotte, EM (2004) A probabilistic functional network of yeast genes. Science 306: pp. 1555-1558 CrossRef
    39. von Mering, C, Jensen, LJ, Snel, B, Hooper, SD, Krupp, M, Foglierini, M, Jouffre, N, Huynen, MA, Bork, P (2005) STRING: Known and predicted protein鈥損rotein associations, integrated and transferred across organisms. Nucleic Acids Res 33: pp. D433-D437 CrossRef
    40. Mammoto, T, Jiang, A, Jiang, E, Panigrahy, D, Kieran, MW, Mammoto, A (2013) Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol 183: pp. 1293-1305 CrossRef
    41. Toledo, LI, Altmeyer, M, Rask, MB, Lukas, C, Larsen, DH, Povlsen, LK, Bekker-Jensen, S, Mailand, N, Bartek, J, Lukas, J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155: pp. 1088-1103 CrossRef
    42. Kim, SY, Dunn, IF, Firestein, R, Gupta, P, Wardwell, L, Repich, K, Schinzel, AC, Wittner, B, Silver, SJ, Root, DE, Boehm, JS, Ramaswamy, S, Lander, ES, Hahn, WC (2010) CK-epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One 5: pp. e8979 CrossRef
    43. Yang, WS, Stockwell, BR (2008) Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol 9: pp. R92 CrossRef
    44. Nardinocchi, L, Puca, R, Givol, D, D鈥橭razi, G (2010) HIPK2-A therapeutical target to be (re)activated for tumor suppression: Role in p53 activation and HIF-1alpha inhibition. Cell Cycle 4: pp. 9(7)
    45. Choi, YL, Bocanegra, M, Kwon, MJ, Shin, YK, Nam, SJ, Yang, JH, Kao, J, Godwin, AK, Pollack, JR (2010) LYN is a mediator of epithelial-mesenchymal transition and a target of dasatinib in breast cancer. Cancer Res 70: pp. 2296-2306 CrossRef
    46. Krasnoperov, V, Kumar, SR, Ley, E, Li, X, Scehnet, J, Liu, R, Zozulya, S, Gill, PS (2010) Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol 176: pp. 2029-2038 CrossRef
    47. L枚w, S, Vougioukas, VI, Hielscher, T, Schmidt, U, Unterberg, A, Halatsch, ME (2008) Pathogenetic pathways leading to glioblastoma multiforme: association between gene expressions and resistance to erlotinib. Anticancer Res 28: pp. 3729-3732
    48. Reva, B, Antipin, Y, Sander, C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39: pp. e118 CrossRef
    49. Adzhubei, IA, Schmidt, S, Peshkin, L, Ramensky, VE, Gerasimova, A, Bork, P, Kondrashov, AS, Sunyaev, SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: pp. 248-249 CrossRef
    50. Adzhubei, I, Jordan, DM, Sunyaev, SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7: pp. Unit7.20
    51. Ng, PC, Henikoff, S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: pp. 3812-3814 CrossRef
    52. Losman, JA, Kaelin, WG (2013) What a difference a hydroxyl makes: mutant IDH,(R)-2-hydroxyglutarate, and cancer. Genes Dev 27: pp. 836-852 CrossRef
    53. Maslov, S, Sneppen, K (2002) Specificity and stability in topology of protein networks. Science 296: pp. 910-913 CrossRef
    54. Kanehisa, M, Goto, S, Kawashima, S, Nakaya, A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30: pp. 42-46 CrossRef
    55. Liberzon, A, Subramanian, A, Pinchback, R, Thorvaldsd贸ttir, H, Tamayo, P, Mesirov, JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27: pp. 1739-1740 CrossRef
    56. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G (2000) Gene ontology: tool for the unification of biology: The Gene Ontology Consortium. Nat Genet 25: pp. 25-29 CrossRef
    57. Hanahan, D, Weinberg, RA (2011) Hallmarks of cancer: the next generation. Cell 144: pp. 646-674 CrossRef
    58. Lena, PD, Wu, G, Martelli, PL, Casadio, R, Nardini, C (2013) MIMO: an efficient tool for molecular interaction maps overlap. BMC Bioinformatics 14: pp. 159 CrossRef
    59. di Bernardo, D, Thompson, MJ, Gardner, TS, Chobot, SE, Eastwood, EL, Wojtovich, AP, Elliott, SJ, Schaus, SE, Collins, JJ (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23: pp. 377-383 CrossRef
    60. Ruepp, A, Waegele, B, Lechner, M, Brauner, B, Dunger-Kaltenbach, I, Fobo, G, Frishman, G, Montrone, C, Mewes, HW (2010) CORUM: the comprehensive resource of mammalian protein complexes鈥?009. Nucleic Acids Res 38: pp. D497-D501 CrossRef
    61. Hornbeck, PV, Kornhauser, JM, Tkachev, S, Zhang, B, Skrzypek, E, Murray, B, Latham, V, Sullivan, M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40: pp. D261-D270 CrossRef
    62. Fisher, RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis. Results We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership. Conclusions The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700