Impedance of Aqueous Solutions of KCl at the Ultra-low Frequency Range: Use of Cole-Cole Impedance Element to Account for the Frequency Dispersion Peak at 20 mHz
详细信息    查看全文
  • 作者:José A. Giacometti ; Neri Alves ; Márcia Y. Teruya
  • 关键词:Electric double layer ; Metal ; electrolyte interface ; Electrolytic solution ; Impedance measurements ; Ultra ; low frequency
  • 刊名:Brazilian Journal of Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:1
  • 页码:50-55
  • 全文大小:487 KB
  • 参考文献:1.J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy (Wiley & Sons, New York, 1987)
    2.F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Germany, 2003)
    3.M. Becchi, C. Avendano, A. Stragazzi, G. Barbero, Impedance Spectroscopy of water solutions: the role of ions at the liquid-electrode interface. J. Chem. Phys. B 109, 23444–23449 (2005)CrossRef
    4.G. Barbero, L.R. Evangelista, Adsorption phenomena of neutral particles and a kinetic equation at the interface. Phys. Rev. E 70, 031605 (2004)CrossRef ADS
    5.G. Barbero, Influence of adsorption phenomenon on the impedance spectroscopy of a cell of liquid. Phys. Rev. E 71, 062201 (2005)CrossRef ADS
    6.G. Barbero, A.M. Figueiredo Neto, F.C.M. Freire, M. Scarlerandi, Frequency dependence of the electrical impedance of electrolytic cells: the role of the ionic adsorption/desorption phenomena and the Stern layer. Phys. Lett. A 360, 179–182 (2006)CrossRef ADS
    7.G. Barbero, M. Becchi, A. Stragazzi, J. Le Digabel, A.M. Figueiredo Neto, Experimental evidence for the adsorption-desorption phenomenon of the spectroscopy impedance measurements of an electrolytic cell. J. Appl. Phys. 101, 044102 (2007)CrossRef ADS
    8.G. Derfel, G. Barbero, Numerical study of ionic contribution to susceptibility and impedance of dielectric layer. J. Mol. Liq. 150, 43–50 (2009)CrossRef
    9.G. Barbero, F. Batalioto, A.M. Figueiredo Neto, Impedance spectroscopy of an electrolytic cell limited by ohmic electrodes. J. Appl. Phys. 101, 054102 (2007)CrossRef ADS
    10.D.M. Taylor, A.G. MacDonald, AC admittance of the metal-insulator-electrolyte interface. J. Phys. D. Appl. Phys. 20, 1277–1283 (1987)CrossRef ADS
    11.J.-B. Jorcim, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedande spectroscopy. Electrochim. Acta 51, 1473–1479 (2006)CrossRef
    12.W.G. Pell, A. Zolfaghari, B.E. Conway, Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J. Electroanal. Chem. 532, 13–23 (2002)CrossRef
    13.E.K. Lenzi, J.L. de Paula, F.R.G.B. Silva, L.R. Evangelista, A connection between anomalous Poisson-Nernst-Planck model and equivalent circuits with constant phase elements. J. Chem. Phys. C 117, 23685–23690 (2013)CrossRef
    14.A.R. Duarte, F. Batalioto, G. Barbero, A.M. Figueiredo Neto, Measurement of the impedance of aqueous solutions of KCl: an analysis using an extension of Poisson-Nernst-Planck model. Appl. Phys. Lett. 105, 022901 (2014)CrossRef ADS
    15.A.R. Duarte, Ph.D. Thesis, São Paulo University, Brazil (2015)
    16.As described in the 1260A Impedance Analyzer operating manual
    17.Scribner and Associates, Inc., Charlottesville, VA, USA
    18.R.H.M. van de Leur, A critical consideration on the interpretation of impedance plots. J. Phys. D. Appl. Phys. 24, 1430–1435 (1991)CrossRef ADS
    19.J.R. Macdonald, Comparison and evaluation of several models for fitting the frequency response of dispersive systems. J. Chem. Phys. 118, 3258–3267 (2003)CrossRef ADS
    20.J.R. Macdonald, Analysis of dielectric and conductive dispersion above Tg in glass-forming molecular liquids. J. Chem. Phys. 112, 13684–13694 (2008)CrossRef
    21.K.J. Woelfel, J.E. Pemberton, Determination of emersed electrochemical interface thickness by ellipsometry: aqueous electrolytes on Ag. J. Electroanal. Chem. 456, 161–169 (1998)CrossRef
    22.J.B. Bates, Y.T. Chu, W.T. Stribling, Surface topography and impedance of metal-electrolytic interfaces. Phys. Rev. Lett. 60, 627–630 (1988)CrossRef ADS
    23.F. Pizzitutti, F. Bruno, Electrode and interfacial polarization in broadband dielectric spectroscopy measurements. Rev. Sci. Instrum. 72, 2502–2504 (2001)CrossRef ADS
    24.V.M.-W. Huang, V. Vivier, M.E. Orazem, N. Pébère, B. Tribollet, The apparent constant-phase-element behavior of a disk electrode with faradaic reactions—a global and local impedance analysis. J. Electrochem. Soc. 154, C81–C88 (2007)CrossRef
    25.F. Batalioto, A.R. Duarte, G. Barbero, A.M. Figueiredo Neto, Dielectric dispersion of water in the frequency range from 10 mHz to 30 MHz. J. Phys. Chem. B 114, 3467–3471 (2010)CrossRef
    26.K.J. Woefel, J.E. Pemberton, Determination of emersed electrochemical interface thickness by ellipsometry: aqueous electrolytes on Ag. J. Electroanal. Chem. 456, 161–169 (1998)CrossRef
    27.J.R. Macdonald, Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects. J. Phys. Condens. Matter 22, 495101 (2010)CrossRef
    28.J.R. Macdonald, Utility and importance of Poisson-Nernst-Planck imittance spectroscopy fitting models. J. Chem. Phys. C 117, 23433–23450 (2013)CrossRef
    29.E.K. Lenzi, M.K. Lenzi, F.R.G.B. Silva, G. Gonçalves, R. Rossato, R.S. Zola, L.R. Evangelista, A framework to investigate the immittance responses for finite length-situations: fractional diffusion equation, reaction term, and boundary conditions. J. Electroanal. Chem. 712, 82–88 (2014)CrossRef
  • 作者单位:José A. Giacometti (1)
    Neri Alves (2)
    Márcia Y. Teruya (2)

    1. Instituto de Física de São Carlos, USP, 13566-590, São Carlos, SP, Brazil
    2. Faculdade de Ciências e Tecnologia, UNESP, 19060-900, Presidente Prudente, SP, Brazil
  • 刊物类别:Physics and Astronomy
  • 出版者:Springer New York
  • ISSN:1678-4448
文摘
This paper reports on the analysis of dispersion in the imaginary part of impedance often observed at low frequencies in a variety of systems. The experimental data were obtained with an electrolytic cell containing KCl aqueous solution in the frequency range from 0.1 mHz to 10 MHz, where the use of ultra-low frequencies helps clarify the analysis of the imaginary impedance dispersion. It is shown that the low frequency dispersion described in the literature is the tail of a relaxation peak located at f ≅ 20 mHz. This ultra-low frequency dispersion peak is analyzed with a Cole-Cole impedance element, being associated with the electric double layer at the metal-electrolyte interface. Quantitative information can be extracted for the double layer, including its thickness (∼1 nm) and electrical resistivity (∼50 GΩm). Keywords Electric double layer Metal-electrolyte interface Electrolytic solution Impedance measurements Ultra-low frequency

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700