A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations
详细信息    查看全文
  • 作者:A. H. Bhrawy ; E. H. Doha ; S. S. Ezz-Eldien ; M. A. Abdelkawy
  • 关键词:Coupled KdV equation ; Operational matrix ; Gauss quadrature ; Collocation spectral method ; Caputo derivative
  • 刊名:Calcolo
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:1-17
  • 全文大小:732 KB
  • 参考文献:1.Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)CrossRef
    2.Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)CrossRef
    3.Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)MATH
    4.Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)CrossRef
    5.Grzesikiewicz, W., Wakulicz, A., Zbiciak, A.: Non-linear problems of fractional in modelling of mechanical systems. Int. J. Mech. Sci. 70, 89–90 (2013)CrossRef
    6.Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)CrossRef MathSciNet MATH
    7.Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)CrossRef MathSciNet MATH
    8.Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4, 1021–1032 (2010)MathSciNet MATH
    9.Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Tech. 58(4), 583–592 (2010)MATH
    10.Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation reveal structural heterogeneity effects on dispersion of repolarization. J. R. Soc. Interface. (2014). doi:10.​1098/​rsif.​2014.​0352
    11.Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)CrossRef MathSciNet MATH
    12.Sebaa, N., Fellah, Z.E.A., Lauriks, W., Depollier, C.: Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 86, 2668–2677 (2006)CrossRef MATH
    13.Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)CrossRef MathSciNet MATH
    14.Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)CrossRef MathSciNet MATH
    15.Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)CrossRef MathSciNet
    16.Carella, A.R., Dorao, C.A.: Least-Squares spectral method for the solution of a fractional advection-dispersion equation. J. Comput. Phys. 232, 33–45 (2013)CrossRef MathSciNet
    17.Pang, H.-K., Sun, H.-W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)CrossRef MathSciNet MATH
    18.Lucena, L.S., da Silva, L.R., Tateishi, A.A., Lenzi, M.K., Ribeiro, H.V., Lenzi, E.K.: Solutions for a fractional diffusion equation with noninteger dimensions. Nonlinear Anal. Real World Appl. 13, 1955–1960 (2012)CrossRef MathSciNet MATH
    19.Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)CrossRef MathSciNet MATH
    20.Khan, N.A., Khan, N.-U., Ara, A., Jamil, M.: Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111–118 (2012)CrossRef
    21.Gao, G.-H., Sun, Z.-Z., Zhang, Y.-N.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)CrossRef MathSciNet MATH
    22.Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRef MathSciNet
    23.Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRef MathSciNet
    24.Chen, J., Liu, F., Liu, Q., Chen, X., Anh, V., Turner, I., Burrage, K.: Numerical simulation for the three-dimension fractional sub-diffusion equation. Appl. Math. Model. 38, 3695–3705 (2014)CrossRef MathSciNet
    25.Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)CrossRef MathSciNet
    26.Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218, 10642–10646 (2012)CrossRef MathSciNet MATH
    27.Garra, R.: Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods. Commun. Nonlinear Sci. Numer. Simul. 17, 1549–1554 (2012)CrossRef MathSciNet MATH
    28.Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)CrossRef MathSciNet MATH
    29.Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. (2014). doi:10.​1007/​s10543-014-0484-2
    30.Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)CrossRef MathSciNet MATH
    31.Bhrawy, A.H., Alofi, A.S., Ezz-Eldien, S.S.: A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 24, 2146–2152 (2011)CrossRef MathSciNet MATH
    32.Bhrawy, A.H., Al-Shomrani, M.M.: A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ. 2012, 1–19 (2012)CrossRef MathSciNet
    33.Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)CrossRef MathSciNet MATH
    34.Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)CrossRef MathSciNet MATH
    35.Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)CrossRef MathSciNet MATH
    36.Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135–1142 (2011)CrossRef MathSciNet MATH
    37.Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)CrossRef MathSciNet
    38.Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. (2014). doi:10.​1016/​j.​jcp.​2014.​03.​039
    39.Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2) (2015)
    40.Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. (2014). doi:10.​1016/​j.​jcp.​2014.​12.​001
    41.Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving \(1+1\) fractional Schrodinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus (2014). doi:10.​1140/​epjp/​i2014-14260-6
    42.He, J.H.: Approximate analytical solution for seepage flow with fractional derivati in porous media. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998)CrossRef MATH
    43.Ostrovsky, L.: Stepanyants YuA. Do interal solutions exist in the ocean? Rev. Geophys. 27, 293–310 (1989)CrossRef
    44.Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85, 407–408 (1981)CrossRef MathSciNet
    45.El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)CrossRef MathSciNet MATH
    46.El-Wakil, S.A., Abulwafa, E.M., El-Shewy, E.K., Mahmoud, A.A.: Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 18, 092116 (2011)CrossRef
    47.Liu, J.-C., Hou, G.-L.: New approximate solution for time-fractional coupled KdV equations by generalised differential transform method. Chin. Phys. B 19(11), 110203 (2010)CrossRef
    48.Merdan, M., Mohyud-Din, S.T.: A New Method for Time-fractionel Coupled KDV Equations with Modified Riemann–Liouville Derivative. Stud. Nonlinear Sci. 2(2), 77–86 (2011)
  • 作者单位:A. H. Bhrawy (1) (2)
    E. H. Doha (3)
    S. S. Ezz-Eldien (4)
    M. A. Abdelkawy (2)

    1. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
    2. Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
    3. Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
    4. Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo, Egypt
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Theory of Computation
  • 出版者:Springer Milan
  • ISSN:1126-5434
文摘
The time-fractional coupled Korteweg–de Vries (KdV) system is a generalization of the classical coupled KdV system and obtained by replacing the first order time derivatives by fractional derivatives of orders \(\nu _1\) and \(\nu _2\), \((0<\nu _1,\nu _2\le 1).\) In this paper, an accurate and robust numerical technique is proposed for solving the time-fractional coupled KdV equations. The shifted Legendre polynomials are introduced as basis functions of the collocation spectral method together with the operational matrix of fractional derivatives (described in the Caputo sense) in order to reduce the time-fractional coupled KdV equations into a problem consisting of a system of algebraic equations that greatly simplifies the problem. In order to test the efficiency and validity of the proposed numerical technique, we apply it to solve two numerical examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700