JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer
详细信息    查看全文
  • 作者:SongNan Hao (1) (2)
    YanMei Yang (3)
    Yan Liu (4)
    ShuCai Yang (1)
    Geng Wang (1)
    JianBing Xiao (1)
    HuiDong Liu (1)
  • 关键词:Lung carcinomas ; JAM ; C ; Lymphangiogenesis ; Metastasis ; Survival
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:35
  • 期:6
  • 页码:5675-5687
  • 全文大小:
  • 参考文献:1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212-6. CrossRef
    2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346:92-. CrossRef
    3. Achen M, Mann GB, Stacker S. Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer. 2006;94:1355-0. CrossRef
    4. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A. Changing epidemiology of small-cell lung cancer in the united states over the last 30?years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539-4. CrossRef
    5. Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES. Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest. 2010;128(1):452-2. CrossRef
    6. Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, et al. A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res. 2001;68:7293-03. CrossRef
    7. Williams AF, Barclay AN. The immunoglobulin superfamily—domains for cell surface recognition. Annu Rev Immunol. 1988;6:381-05. CrossRef
    8. Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev. 2005;57:857-7. CrossRef
    9. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998;142:117-7. CrossRef
    10. Ostermann G, Weber KS, Zernecke A, Schr?der A, Weber C. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol. 2002;3:151-. CrossRef
    11. Naik MU, Mousa SA, Parkos CA, Naik UP. Signaling through JAM-1 and αvβ3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and αvβ3 complex. Blood. 2003;102:2108-4. CrossRef
    12. Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley J, et al. Characterization of huJAM: evidence for involvement in cell–cell contact and tight junction regulation. Am J Physiol Cell Physiol. 2000;279:C1733-3.
    13. Mandell KJ, Babbin BA, Nusrat A, Parkos CA. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on β1 integrins and Rap1 activity. J Biol Chem. 2005;280:11665-4. CrossRef
    14. Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP, et al. A novel protein with homology to the junctional adhesion molecule: characterization of leukocyte interactions. J Bio Chem. 2000;275:34750-. CrossRef
    15. Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem. 2000;275:19139-5. CrossRef
    16. Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 2001;276:45826-2. CrossRef
    17. Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem. 2001;276:2733-1. CrossRef
    18. Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, et al. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol. 2002;168:1618-6. CrossRef
    19. Cunningham SA, Rodriguez JM, Arrate MP, Tran TM, Brock TA. JAM2 interacts with α4β1: facilitation by JAM3. J Biol Chem. 2002;277:27589-2. CrossRef
    20. Chavakis TT, Keiper R, Matz-Westphal R, Hersemeyer K, Sachs UJ, Nawroth PP, et al. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem. 2004;279:55602-. CrossRef
    21. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90:561-. CrossRef
    22. Garmy-Susini B, Avraamides CJ, Schmid MC, Foubert P, Ellies LG, Barnes L, et al. Integrin α4β1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res. 2010;70:3042-1. CrossRef
    23. Bono P, Wasenius VM, Heikkil? P, Lundin J, Jackson DG, Joensuu H. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res. 2004;10:7144-. CrossRef
    24. Wang WR, Pan ZC, Yuan XC, Liu X. Isolation of a metastatic ascitic subpopulation from a human lung adenocarcinoma cell line in nude mice and studies on its biological properties. Chin J Oncol. 1987;9:412-.
    25. Fuse C, Ishida Y, Hikita T, Asai T, Oku N. Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma. J Biol Chem. 2007;282:8276-3. CrossRef
    26. Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H, et al. COX-2-mediated regulation of VEGF-C in association with lymphangiogenesis and lymph node metastasis in lung cancer. Anat Rec (Hoboken). 2010;293:1838-6. CrossRef
    27. Lotz MM, Nusrat A, Madara JL, Ezzell R, Wewer UM, Mercurio AM. Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium. Am J Pathol. 1997;150:747-0.
    28. Vlahakis NE, Young BA, Atakilit A, Sheppard D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin α9β1. J Biol Chem. 2005;280:4544-2. CrossRef
    29. Liu P, Chen W, Zhu H, Liu B, Song S, Shen W, et al. Expression of VEGF-C correlates with a poor prognosis based on analysis of prognostic factors in 73 patients with esophageal squamous cell carcinomas. Jpn J Clin Onco. 2009;l39:644-0. CrossRef
    30. Nakagawa K, Kawaura A, Kato S, Takeda E, Okano T. 1α,25-dihydroxyvitamin D3 is a preventive factor in the metastasis of lung cancer. Carcinogenesis. 2005;26:429-0. CrossRef
    31. Achen MG, Stacker SA. Molecular control of lymphatic metastasis. Ann N Y Acad Sci. 2008;1131:225-4. CrossRef
    32. Langer HF, Orlova VV, Xie C, Kaul S, Schneider D, Lonsdorf AS, et al. A novel function of junctional adhesion molecule-C in mediating melanoma cell metastasis. Cancer Res. 2011;71:4096-05. CrossRef
    33. Mandicourt G, Iden S, Ebnet K, Aurrand-Lions M, Imhof BA. JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration. J Biol Chem. 2007;282:1830-. CrossRef
    34. Rabquer BJ, Amin MA, Teegala N, Shaheen MK, Tsou PS, Ruth JH, et al. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J Immunol. 2010;185:1777-5. CrossRef
    35. Lamagna C, Hodivala-Dilke KM, Imhof BA, Aurrand-Lions M. Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res. 2005;65:5703-0. CrossRef
    36. Chien MH, Ku CC, Johansson G, Chen MW, Hsiao M, Su JL, et al. Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis. 2009;30:2005-3. CrossRef
    37. Shayan R, Achen MG, Stacker SA. Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis. 2006;27:1729-7382. CrossRef
    38. Coso S, Zeng Y, Opeskin K, Williams ED. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis. PLoS One. 2012;7(40):e39558. CrossRef
  • 作者单位:SongNan Hao (1) (2)
    YanMei Yang (3)
    Yan Liu (4)
    ShuCai Yang (1)
    Geng Wang (1)
    JianBing Xiao (1)
    HuiDong Liu (1)

    1. Department of Anatomy, Harbin Medical University, 194 Xue-fu Road, Harbin, Heilongjiang, 150081, China
    2. Department of Orthopedics, Harbin Fifth Hospital, Harbin, Heilongjiang, 150040, China
    3. Cancer Institute, Harbin Medical University, Harbin, Heilongjiang, 150081, China
    4. Department of General Surgery, The Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang, 157011, China
  • ISSN:1423-0380
文摘
This study aims to investigate lymphatic metastasis-related genes in non-small cell lung carcinomas (NSCLC). NSCLC tissue was analyzed for expression of junctional adhesion molecule-C (JAM-C) protein. Our data revealed novel associations between JAM-C overexpression in primary tumors and lymphatic microvessel density (LMVD), lymph node metastasis, and poorer overall survival and recurrence-free survival. We used the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, in vivo and vitro. We found that JAM-C played an important role in different metastasis capacity of lymph node. JAM-C affected tumor growth, LNM, JAM-C, VEGF-C, vasculature, and ERK1/2 phosphorylation (p-ERK1/2). β1 integrin was involved in lymph node metastasis. Moreover, JAM-C knockdown in highly metastatic Anip973 decreased cell migration in scratch-wound assays. The JAM-C knockdown in Anip973 cells and JAM-C cDNA in AGZY83-a cells regulated the vascular endothelial growth factor C (VEGF-C) expression. Immunofluorescence showed that blocked VEGF-C expression in JAM-C shRNA Anip973 cells were restored after JAM-C treatment. JAM-C-induced VEGF-C in JAM-C cDNA AGZY83-a cells was also effectively inhibited by treatment with an antibody specifically against JAM-C. Use of media from Anip973 cells, AGZY83-a, and A549cells lung cancer cells that overexpressed or downregulated JAM-C was demonstrated to affect activity of VEGF-C-induced β1 integrin subunit or ERK activity in human dermal lymphatic endothelial cells (HDLEC) treated with VEGF-C or inhibitory antibody to JAM-C. Overall, these results indicate that JAM-C could mediate metastasis as it contributes to VEGF-C expression in cancer cells. JAM-C affects β1and ERK activation in HDLEC, thus promoting lymphangiogenesis and nodal metastasis. Our findings indicate that JAM-C may be a therapeutic target for preventing and treating lymphatic metastases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700