Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies
详细信息    查看全文
  • 作者:Pierre J. Marie (1) (2)

    1. INSERM UMR-1132
    ; H么pital Lariboisi猫re ; 2 rue Ambroise Par ; 75475 ; Paris Cedex 10 ; France
    2. Universit Paris Diderot
    ; Sorbonne Paris Cit茅 ; Paris ; France
  • 关键词:Bone formation ; Osteoporosis ; Skeletal dysplasias ; Genetic mutations ; Osteosarcoma ; Treatments
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:72
  • 期:7
  • 页码:1347-1361
  • 全文大小:668 KB
  • 参考文献:1. Seeman, E (2002) Pathogenesis of bone fragility in women and men. Lancet 359: pp. 1841-1850
    2. Khosla, S, Riggs, BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34: pp. 1015-1030
    3. Riggs, BL, Parfitt, AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20: pp. 177-184
    4. Kawai, M, Modder, UI, Khosla, S, Rosen, CJ (2011) Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10: pp. 141-156
    5. Marie, PJ, Kassem, M (2011) Osteoblasts in osteoporosis: past emerging and future anabolic targets. Eur J Endocrinol 165: pp. 1-10
    6. Karsenty, G, Kronenberg, HM, Settembre, C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25: pp. 629-648
    7. Baron, R, Kneissel, M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19: pp. 179-192
    8. Long, F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13: pp. 27-38
    9. Bianco, P, Sacchetti, B, Riminucci, M (2011) Stem cells in skeletal physiology and endocrine diseases of bone. Endocr Dev 21: pp. 91-101
    10. Karsenty, G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142: pp. 2731-2733
    11. Lian, JB, Stein, GS, Javed, A, Wijnen, AJ, Stein, JL, Montecino, M, Hassan, MQ, Gaur, T, Lengner, CJ, Young, DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7: pp. 1-16
    12. Marie, PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: pp. 98-105
    13. Bonewald, LF (2011) The amazing osteocyte. J Bone Miner Res 26: pp. 229-238
    14. Marie, PJ (1999) Cellular and molecular alterations of osteoblasts in human disorders of bone formation. Histol Histopathol 14: pp. 525-538
    15. Manolagas, SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21: pp. 115-137
    16. Marie, PJ (1994) Human osteoblastic cells: a potential tool to assess the etiology of pathologic bone formation. J Bone Miner Res 9: pp. 1847-1850
    17. Lian, JB, Stein, GS, Wijnen, AJ, Stein, JL, Hassan, MQ, Gaur, T, Zhang, Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8: pp. 212-227
    18. Bradley, EW, McGee-Lawrence, ME, Westendorf, JJ (2011) Hdac-mediated control of endochondral and intramembranous ossification. Crit Rev Eukaryot Gene Expr 21: pp. 101-113
    19. Canalis, E (1983) The hormonal and local regulation of bone formation. Endocr Rev 4: pp. 62-77
    20. Marie, PJ, Jones, D, Vico, L, Zallone, A, Hinsenkamp, M, Cancedda, R (2000) Osteobiology strain and microgravity: part I. Studies at the cellular level. Calcif Tissue Int 67: pp. 2-9
    21. Sims, NA, Martin, TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3: pp. 481
    22. Marie, PJ (2009) Bone cell-matrix protein interactions. Osteoporos Int 20: pp. 1037-1042
    23. Khosla, S (2013) Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 38: pp. 1228-1235
    24. Manolagas, SC, Parfitt, AM (2010) What old means to bone. Trends Endocrinol Metab 21: pp. 369-374
    25. Ahdjoudj, S, Fromigu, O, Marie, PJ (2004) Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol 19: pp. 151-157
    26. Kassem, M, Marie, PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10: pp. 191-197
    27. Marie, PJ, Kassem, M (2011) Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab 96: pp. 600-609
    28. Marie, PJ (2014) Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 29: pp. 1311-1321
    29. Marie, PJ (2001) The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders. Am J Pharmacogenomics 1: pp. 175-187
    30. Canalis, E (2010) New treatment modalities in osteoporosis. Endocr Pract 16: pp. 855-863
    31. Martin, TJ (2014) Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab 21: pp. 8-20
    32. Jilka, RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40: pp. 1434-1446
    33. Compston, JE (2007) Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone 40: pp. 1447-1452
    34. Martin, TJ (2005) Osteoblast-derived PTHrP is a physiological regulator of bone formation. J Clin Invest 115: pp. 2322-2324
    35. Wang, H, Liu, J, Yin, Y, Wu, J, Wang, Z, Miao, D, Sun, W (2014) Recombinant human parathyroid hormone related protein 1鈥?4 and 1鈥?4 and their roles in osteoporosis treatment. PLoS One 9: pp. e88237
    36. Horwitz, MJ, Augustine, M, Khan, L, Martin, E, Oakley, CC, Carneiro, RM, Tedesco, MB, Laslavic, A, Sereika, SM, Bisello, A, Garcia-Ocana, A, Gundberg, CM, Cauley, JA, Stewart, AF (2013) A comparison of parathyroid hormone-related protein (1鈥?6) and parathyroid hormone (1鈥?4) on markers of bone turnover and bone density in postmenopausal women: the PrOP study. J Bone Miner Res 28: pp. 2266-2276
    37. Canalis, E, Giustina, A, Bilezikian, JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357: pp. 905-916
    38. Marie, PJ (2012) Signaling pathways affecting skeletal health. Curr Osteoporos Rep 10: pp. 190-198
    39. Gazzerro, E, Canalis, E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7: pp. 51-65
    40. Simic, P, Culej, JB, Orlic, I, Grgurevic, L, Draca, N, Spaventi, R, Vukicevic, S (2006) Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281: pp. 25509-25521
    41. Fromigu, O, Modrowski, D, Marie, PJ (2004) Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des 10: pp. 2593-2603
    42. Janssens, K, Dijke, P, Janssens, S, Hul, W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26: pp. 743-774
    43. Marie, PJ (2012) Fibroblast growth factor signaling controlling bone formation: an update. Gene 498: pp. 1-4
    44. Kawai, M, Rosen, CJ (2012) The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am 41: pp. 323-333
    45. Engin, F, Yao, Z, Yang, T, Zhou, G, Bertin, T, Jiang, MM, Chen, Y, Wang, L, Zheng, H, Sutton, RE, Boyce, BF, Lee, B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14: pp. 299-305
    46. Hilton, MJ, Tu, X, Wu, X, Bai, S, Zhao, H, Kobayashi, T, Kronenberg, HM, Teitelbaum, SL, Ross, FP, Kopan, R, Long, F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14: pp. 306-314
    47. Tao, J, Jiang, MM, Jiang, L, Salvo, JS, Zeng, HC, Dawson, B, Bertin, TK, Rao, PH, Chen, R, Donehower, LA, Gannon, F, Lee, BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26: pp. 390-401
    48. Papachroni, KK, Karatzas, DN, Papavassiliou, KA, Basdra, EK, Papavassiliou, AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15: pp. 208-216
    49. Robling, AG (2012) The interaction of biological factors with mechanical signals in bone adaptation: recent developments. Curr Osteoporos Rep 10: pp. 126-131
    50. Clevers, H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: pp. 469-480
    51. Gong, Y, Slee, RB, Fukai, N, Rawadi, G, Roman-Roman, S, Reginato, AM, Wang, H, Cundy, T, Glorieux, FH, Lev, D, Zacharin, M, Oexle, K, Marcelino, J, Suwairi, W, Heeger, S, Sabatakos, G, Apte, S, Adkins, WN, Allgrove, J, Arslan-Kirchner, M, Batch, JA, Beighton, P, Black, GC, Boles, RG, Boon, LM, Borrone, C, Brunner, HG, Carle, GF, Dallapiccola, B, Paepe, A, Floege, B, Halfhide, ML, Hall, B, Hennekam, RC, Hirose, T, Jans, A, Juppner, H, Kim, CA, Keppler-Noreuil, K, Kohlschuetter, A, LaCombe, D, Lambert, M, Lemyre, E, Letteboer, T, Peltonen, L, Ramesar, RS, Romanengo, M, Somer, H, Steichen-Gersdorf, E, Steinmann, B, Sullivan, B, Superti-Furga, A, Swoboda, W, Boogaard, MJ, Hul, W, Vikkula, M, Votruba, M, Zabel, B, Garcia, T, Baron, R, Olsen, BR, Warman, ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: pp. 513-523
    52. Baron, R, Rawadi, G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148: pp. 2635-2643
    53. Canalis, E (2013) Wnt signaling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9: pp. 575-583
    54. Wagner, ER, Zhu, G, Zhang, BQ, Luo, Q, Shi, Q, Huang, E, Gao, Y, Gao, JL, Kim, SH, Rastegar, F, Yang, K, He, BC, Chen, L, Zuo, GW, Bi, Y, Su, Y, Luo, J, Luo, X, Huang, J, Deng, ZL, Reid, RR, Luu, HH, Haydon, RC, He, TC (2011) The therapeutic potential of the Wnt signaling pathway in bone disorders. Curr Mol Pharmacol 4: pp. 14-25
    55. Bezooijen, RL, Dijke, P, Papapoulos, SE, Lowik, CW (2005) SOST/sclerostin an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16: pp. 319-327
    56. Li, X, Zhang, Y, Kang, H, Liu, W, Liu, P, Zhang, J, Harris, SE, Wu, D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: pp. 19883-19887
    57. Paszty, C, Turner, CH, Robinson, MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25: pp. 1897-1904
    58. McClung, MR, Grauer, A (2014) Romosozumab in postmenopausal women with osteopenia. N Engl J Med 370: pp. 1664-1665
    59. Ke, HZ, Richards, WG, Li, X, Ominsky, MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33: pp. 747-783
    60. Morvan, F, Boulukos, K, Clment-Lacroix, P, Roman Roman, S, Suc-Royer, I, Vayssi猫re, B, Ammann, P, Martin, P, Pinho, S, Pognonec, P, Mollat, P, Niehrs, C, Baron, R, Rawadi, G (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21: pp. 934-945
    61. Bodine, PV, Stauffer, B, Ponce-de-Leon, H, Bhat, RA, Mangine, A, Seestaller-Wehr, LM, Moran, RA, Billiard, J, Fukayama, S, Komm, BS, Pitts, K, Krishnamurthy, G, Gopalsamy, A, Shi, M, Kern, JC, Commons, TJ, Woodworth, RP, Wilson, MA, Welmaker, GS, Trybulski, EJ, Moore, WJ (2009) A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 44: pp. 1063-1068
    62. Zhang, J, Tu, Q, Bonewald, LF, He, X, Stein, G, Lian, J, Chen, J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26: pp. 1953-1963
    63. Hassan, MQ, Maeda, Y, Taipaleenmaki, H, Zhang, W, Jafferji, M, Gordon, JA, Li, Z, Croce, CM, Wijnen, AJ, Stein, JL, Stein, GS, Lian, JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287: pp. 42084-42092
    64. Guo, D, Li, Q, Lv, Q, Wei, Q, Cao, S, Gu, J (2014) MiR-27a targets sFRP1 in hFOB cells to regulate proliferation apoptosis and differentiation. PLoS One 9: pp. e91354
    65. Ha每, E, Laplantine, E, Geoffroy, V, Frain, M, Kohler, T, M眉ller, R, Marie, PJ (2009) N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling osteoblast function and bone formation. Mol Cell Biol 29: pp. 953-964
    66. Ha每, E, Nouraud, A, Marie, PJ (2009) N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt ERK and PI3聽K/Akt signaling. PLoS One 4: pp. e8284
    67. Ha每, E, Buczkowski, T, Marty, C, Nascimento, S, Sonnet, P, Marie, PJ (2012) Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J Bone Miner Res 27: pp. 1852-1863
    68. Ha每, E, Dieudonn, FX, Saidak, Z, Marty, C, Brun, J, Nascimento, S, Sonnet, P, Marie, PJ (2014) N-Cadherin/Wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 229: pp. 1765-1775
    69. Revollo, L, Kading, J, Jeong, SY, Li, J, Salazar, V, Mbalaviele, G, Civitelli, R (2014) N-cadherin restrains PTH activation of Lrp6/beta-catenin signaling and osteoanabolic action. J Bone Miner Res.
    70. Marie, PJ, Ha每, E, Saidak, Z (2014) Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol Metab 925: pp. 567-575
    71. Gunther, T, Poli, C, Muller, JM, Catala-Lehnen, P, Schinke, T, Yin, N, Vomstein, S, Amling, M, Sch眉le, R (2005) Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. EMBO J 24: pp. 3049-3056
    72. Govoni, KE, Baylink, DJ, Chen, J, Mohan, S (2006) Disruption of four-and-a-half LIM 2 decreases bone mineral content and bone mineral density in femur and tibia bones of female mice. Calcif Tissue Int 79: pp. 112-117
    73. Brun, J, Dieudonn, FX, Marty, C, Muller, J, Sch眉le, R, Patino-Garcia, A, Lecanda, F, Fromigu, O, Marie, PJ (2013) FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo. PLoS One 8: pp. e55034
    74. Brun, J, Fromigu, O, Dieudonn, FX, Marty, C, Chen, J, Dahan, J, Wei, Y, Marie, PJ (2013) The LIM-only protein FHL2 controls mesenchymal cell osteogenic differentiation and bone formation through Wnt5a and Wnt10b. Bone 53: pp. 6-12
    75. Kansara, M, Tsang, M, Kodjabachian, L, Sims, NA, Trivett, MK, Ehrich, M, Dobrovic, A, Slavin, J, Choong, PF, Simmons, PJ, Dawid, IB, Thomas, DM (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119: pp. 837-851
    76. Boyce, BF, Yao, Z, Xing, L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192: pp. 367-375
    77. Krum, SA, Chang, J, Miranda-Carboni, G, Wang, CY (2010) Novel functions for NFkappaB: inhibition of bone formation. Nat Rev Rheumatol 6: pp. 607-611
    78. Novack, DV (2011) Role of NF-kappaB in the skeleton. Cell Res 21: pp. 169-182
    79. Chang, J, Liu, F, Lee, M, Wu, B, Ting, K, Zara, JN, Soo, C, Al Hezaimi, K, Zou, W, Chen, X, Mooney, DJ, Wang, CY (2009) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci USA 110: pp. 9469-9474
    80. Chang, J, Wang, Z, Tang, E, Fan, Z, McCauley, L, Franceschi, R, Guan, K, Krebsbach, PH, Wang, CY (2009) Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 15: pp. 682-689
    81. Yao, Z, Li, Y, Yin, X, Dong, Y, Xing, L, Boyce, BF (2014) NF-kappaB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res 29: pp. 866-877
    82. Yu, B, Chang, J, Liu, Y, Li, J, Kevork, K, Al-Hezaimi, K, Graves, DT, Park, NH, Wang, CY (2014) Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-kappaB. Nat Med 20: pp. 1009-1017
    83. Koutsokeras, A, Purkayashta, N, Rigby, A, Subang, MC, Sclanders, M, Vessillier, S, Mullen, L, Chernajovsky, Y, Gould, D (2014) Generation of an efficiently secreted cell penetrating NF-kappaB inhibitor. FASEB J 28: pp. 373-381
    84. Herranz, D, Serrano, M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10: pp. 819-823
    85. Cohen-Kfir, E, Artsi, H, Levin, A, Abramowitz, E, Bajayo, A, Gurt, I, Zhong, L, D鈥橴rso, A, Toiber, D, Mostoslavsky, R, Dresner-Pollak, R (2011) Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin a bone formation inhibitor. Endocrinology 152: pp. 4514-4524
    86. Simic, P, Zainabadi, K, Bell, E, Sykes, DB, Saez, B, Lotinun, S, Baron, R, Scadden, D, Schipani, E, Guarente, L (2013) SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med 5: pp. 430-440
    87. Edwards, JR, Perrien, DS, Fleming, N, Nyman, JS, Ono, K, Connelly, L, Moore, MM, Lwin, ST, Yull, FE, Mundy, GR, Elefteriou, F (2013) Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res 28: pp. 960-969
    88. Herranz, D, Munoz-Martin, M, Canamero, M, Mulero, F, Martinez-Pastor, B, Fernandez-Capetillo, O, Serrano, M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1: pp. 3
    89. Artsi, H, Cohen-Kfir, E, Gurt, I, Shahar, R, Bajayo, A, Kalish, N, Bellido, TM, Gabet, Y, Dresner-Pollak, R (2014) The sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology 155: pp. 3508-3515
    90. Ciechanover, A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ 12: pp. 1178-1190
    91. Sv猫re, N, Dieudonn, FX, Marie, PJ (2013) E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis 4: pp. e463
    92. Garrett, IR, Chen, D, Gutierrez, G, Zhao, M, Escobedo, A, Rossini, G, Harris, SE, Gallwitz, W, Kim, KB, Hu, S, Crews, CM, Mundy, GR (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111: pp. 1771-1782
    93. Giuliani, N, Morandi, F, Tagliaferri, S, Lazzaretti, M, Bonomini, S, Crugnola, M, Mancini, C, Martella, E, Ferrari, L, Tabilio, A, Rizzoli, V (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110: pp. 334-338
    94. Mukherjee, S, Raje, N, Schoonmaker, JA, Liu, JC, Hideshima, T, Wein, MN, Jones, DC, Vallet, S, Bouxsein, ML, Pozzi, S, Chhetri, S, Seo, YD, Aronson, JP, Patel, C, Fulciniti, M, Purton, LE, Glimcher, LH, Lian, JB, Stein, G, Anderson, KC, Scadden, DT (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118: pp. 491-504
    95. Khedgikar, V, Kushwaha, P, Gautam, J, Verma, A, Changkija, B, Kumar, A, Sharma, S, Nagar, GK, Singh, D, Trivedi, PK, Sangwan, NS, Mishra, PR, Trivedi, R (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 4: pp. e778
    96. Xing, L, Zhang, M, Chen, D (2010) Smurf control in bone cells. J Cell Biochem 110: pp. 554-563
    97. Zhang, G, Guo, B, Wu, H, Tang, T, Zhang, BT, Zheng, L, He, Y, Yang, Z, Pan, X, Chow, H, To, K, Li, Y, Li, D, Wang, X, Wang, Y, Lee, K, Hou, Z, Dong, N, Li, G, Leung, K, Hung, L, He, F, Zhang, L, Qin, L (2012) A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med 18: pp. 307-314
    98. Jones, DC, Wein, MN, Oukka, M, Hofstaetter, JG, Glimcher, MJ, Glimcher, LH (2006) Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312: pp. 1223-1227
    99. Glimcher, LH, Jones, DC, Wein, MN (2007) Control of postnatal bone mass by the zinc finger adapter protein Schnurri-3. Ann N Y Acad Sci 1116: pp. 174-181
    100. Shu, L, Zhang, H, Boyce, BF, Xing, L (2013) Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res 28: pp. 1925-1935
    101. Tsygankov, AY, Teckchandani, AM, Feshchenko, EA, Swaminathan, G (2001) Beyond the RING: CBL proteins as multivalent adapters. Oncogene 20: pp. 6382-6402
    102. Salingcarnboriboon, RA, Pavasant, P, Noda, M (2010) Cbl-b enhances Runx2 protein stability and augments osteocalcin promoter activity in osteoblastic cell lines. J Cell Physiol 224: pp. 743-747
    103. Sanjay, A, Horne, WC, Baron, R (2001) The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Sci STKE 2001: pp. 40
    104. Thien, CB, Langdon, WY (2005) Negative regulation of PTK signaling by Cbl proteins. Growth Factors 23: pp. 161-167
    105. Sv猫re, N, Miraoui, H, Marie, PJ (2011) The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 286: pp. 24443-24450
    106. Dieudonn, FX, Sv猫re, N, Biosse-Duplan, M, Weng, JJ, Su, Y, Marie, PJ (2013) Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells 31: pp. 1340-1349
    107. Brennan, T, Adapala, NS, Barbe, MF, Yingling, V, Sanjay, A (2011) Abrogation of Cbl-PI3聽K interaction increases bone formation and osteoblast prolifration. Calcif Tissue Int 89: pp. 396-410
    108. Aubin, JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2: pp. 81-94
    109. Bianco, P, Robey, PG (2001) Stem cells in tissue engineering. Nature 414: pp. 118-121
    110. Bianco, P, Robey, PG, Saggio, I, Riminucci, M (2010) 鈥淢esenchymal鈥?stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature identity and significance in incurable skeletal disease. Hum Gene Ther 21: pp. 1057-1066
    111. Prockop, DJ, Gregory, CA, Spees, JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100: pp. 11917-11923
    112. Marie, PJ, Fromigu, O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1: pp. 539-548
    113. Vilquin, JT, Rosset, P (2006) Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med 1: pp. 589-604
    114. Marie, PJ (2013) Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol 9: pp. 288-295
    115. Hamidouche, Z, Fromigu, O, Ringe, J, Ha眉pl, T, Vaudin, P, Pages, JC, Srouji, S, Livne, E, Marie, PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106: pp. 18587-18591
    116. Kaabeche, K, Gunou, H, Bouvard, D, Didelot, N, Listrat, A, Marie, PJ (2005) Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 118: pp. 1223-1232
    117. Srouji, S, Ben-David, D, Fromigu, O, Vaudin, P, Kuhn, G, M眉ller, R, Livne, E, Marie, PJ (2012) Lentiviral-mediated integrin alpha5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Hum Gene Ther 23: pp. 167-172
    118. Fromigu, O, Brun, J, Marty, C, Nascimento, S, Sonnet, P, Marie, PJ (2012) Peptide-based activation of alpha5 integrin for promoting osteogenesis. J Cell Biochem 113: pp. 3029-3038
    119. Kumar, S, Ponnazhagan, S (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 21: pp. 3917-3927
    120. Yao, W, Guan, M, Jia, J, Dai, W, Lay, YA, Amugongo, S, Liu, R, Olivos, D, Saunders, M, Lam, KS, Nolta, J, Olvera, D, Ritchie, RO, Lane, NE (2013) Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31: pp. 2003-2014
    121. Guan, M, Yao, W, Liu, R, Lam, KS, Nolta, J, Jia, J, Panganiban, B, Meng, L, Zhou, P, Shahnazari, M, Ritchie, RO, Lane, NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18: pp. 456-462
    122. Zhang, Y, Wei, L, Miron, RJ, Shi, B, Bian, Z (2014) Anabolic bone formation via a site specific bone targeting delivery system by interfering with semaphorin 4d expression. J Bone Miner Res.
    123. Wagner, EF, Karsenty, G (2001) Genetic control of skeletal development. Curr Opin Genet Dev 11: pp. 527-532
    124. Ralston, SH, Uitterlinden, AG (2010) Genetics of osteoporosis. Endocr Rev 31: pp. 629-662
    125. Janssens, K, Hul, W (2002) Molecular genetics of too much bone. Hum Mol Genet 11: pp. 2385-2393
    126. Shenker, A, Chanson, P, Weinstein, LS, Chi, P, Spiegel, AM, Lomri, A, Marie, PJ (1995) Osteoblastic cells derived from isolated lesions of fibrous dysplasia contain activating somatic mutations of the Gs alpha gene. Hum Mol Genet 4: pp. 1675-1676
    127. Marie, PJ (2001) Cellular and molecular basis of fibrous dysplasia. Histol Histopathol 16: pp. 981-988
    128. Riminucci, M, Robey, PG, Bianco, P (2007) The pathology of fibrous dysplasia and the McCune-Albright syndrome. Pediatr Endocrinol Rev 4: pp. 401-411
    129. Marie, PJ, Pollak, C, Chanson, P, Lomri, A (1997) Increased proliferation of osteoblastic cells expressing the activating Gs alpha mutation in monostotic and polyostotic fibrous dysplasia. Am J Pathol 150: pp. 1059-1069
    130. Riminucci, M, Fisher, LW, Shenker, A, Spiegel, AM, Bianco, P, Gehron Robey, P (1997) Fibrous dysplasia of bone in the McCune-Albright syndrome: abnormalities in bone formation. Am J Pathol 151: pp. 1587-1600
    131. Saggio, I, Remoli, C, Spica, E, Cersosimo, S, Sacchetti, B, Robey, PG, Holmbeck, K, Cumano, A, Boyde, A, Bianco, P, Riminucci, M (2014) Constitutive expression of Gsalpha in mice produces a heritable direct replica of human fibrous dysplasia bone pathology and demonstrates its natural history. J Bone Miner Res.
    132. Piersanti, S, Remoli, C, Saggio, I, Funari, A, Michienzi, S, Sacchetti, B, Robey, PG, Riminucci, M, Bianco, P (2010) Transfer analysis and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. J Bone Miner Res 25: pp. 1103-1116
    133. Kronenberg, HM (2010) Gs signaling in osteoblasts and hematopoietic stem cells. Ann NY Acad Sci 1192: pp. 327-329
    134. Sinha, P, Aarnisalo, P, Chubb, R, Ono, N, Fulzele, K, Selig, M, Saeed, H, Chen, M, Weinstein, LS, Divieti Pajevic, P, Kronenberg, HM, Wu, JY (2014) Loss of G alpha early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res.
    135. Wu, JY, Aarnisalo, P, Bastepe, M, Sinha, P, Fulzele, K, Selig, MK, Chen, M, Poulton, IJ, Purton, LE, Sims, NA, Weinstein, LS, Kronenberg, HM (2011) Gsalpha enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest 121: pp. 3492-3504
    136. Regard, JB, Cherman, N, Palmer, D, Kuznetsov, SA, Celi, FS, Guettier, JM, Chen, M, Bhattacharyya, N, Wess, J, Coughlin, SR, Weinstein, LS, Collins, MT, Robey, PG, Yang, Y (2011) Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 108: pp. 20101-20106
    137. Ornitz, DM, Marie, PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: pp. 1446-1465
    138. Lomri, A, Lemonnier, J, Hott, M, Parseval, N, Lajeunie, E, Munnich, A, Renier, D, Marie, PJ (1998) Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 101: pp. 1310-1317
    139. Marie, PJ, Kaabeche, K, Gunou, H (2008) Roles of FGFR2 and twist in human craniosynostosis: insights from genetic mutations in cranial osteoblasts. Front Oral Biol 12: pp. 144-159
    140. Dailey, L, Ambrosetti, D, Mansukhani, A, Basilico, C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16: pp. 233-247
    141. Suzuki, H, Suda, N, Shiga, M, Kobayashi, Y, Nakamura, M, Iseki, S, Moriyama, K (2012) Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts. J Cell Physiol 227: pp. 3267-3277
    142. Rice, DP, Aberg, T, Chan, Y, Tang, Z, Kettunen, PJ, Pakarinen, L, Maxson, RE, Thesleff, I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127: pp. 1845-1855
    143. Hajihosseini, MK (2008) Fibroblast growth factor signaling in cranial suture development and pathogenesis. Front Oral Biol 12: pp. 160-177
    144. Marie, PJ, Coffin, JD, Hurley, MM (2005) FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem 96: pp. 888-896
    145. Mansukhani, A, Bellosta, P, Sahni, M, Basilico, C (2000) Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 149: pp. 1297-1308
    146. Mansukhani, A, Ambrosetti, D, Holmes, G, Cornivelli, L, Basilico, C (2005) Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168: pp. 1065-1076
    147. Wilkie, AO (2007) Cancer drugs to treat birth defects. Nat Genet 39: pp. 1057-1059
    148. Melville, H, Wang, Y, Taub, PJ, Jabs, EW (2010) Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 152A: pp. 3007-3015
    149. Eswarakumar, VP, Ozcan, F, Lew, ED, Bae, JH, Tome, F, Booth, CJ, Adams, DJ, Lax, I, Schlessinger, J (2006) Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci USA 103: pp. 18603-18608
    150. Shukla, V, Coumoul, X, Wang, RH, Kim, HS, Deng, CX (2007) RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39: pp. 1145-1150
    151. Miraoui, H, Ringe, J, Ha眉pl, T, Marie, PJ (2010) Increased EGF- and PDGF伪-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet 19: pp. 1678-1689
    152. Moenning, A, Jager, R, Egert, A, Kress, W, Wardelmann, E, Schorle, H (2009) Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 29: pp. 881-891
    153. Miraoui, H, Marie, PJ (2010) Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3: pp. re9
    154. Howard, TD, Paznekas, WA, Green, ED, Chiang, LC, Ma, N, Ortiz de Luna, RI, Garcia Delgado, C, Gonzalez-Ramos, M, Kline, AD, Jabs, EW (1997) Mutations in TWIST a basic helix-loop-helix transcription factor in Saethre-Chotzen syndrome. Nat Genet 15: pp. 36-41
    155. Ghouzzi, V, Legeai-Mallet, L, Aresta, S, Benoist, C, Munnich, A, Gunzburg, J, Bonaventure, J (2000) Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 9: pp. 813-819
    156. Bialek, P, Kern, B, Yang, X, Schrock, M, Sosic, D, Hong, N, Wu, H, Yu, K, Ornitz, DM, Olson, EN, Justice, MJ, Karsenty, G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6: pp. 423-435
    157. Yousfi, M, Lasmoles, F, Lomri, A, Delannoy, P, Marie, PJ (2001) Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 107: pp. 1153-1161
    158. Yousfi, M, Lasmoles, F, Marie, PJ (2002) TWIST inactivation reduces CBFA1/RUNX2 expression and DNA binding to the osteocalcin promoter in osteoblasts. Biochem Biophys Res Commun 297: pp. 641-644
    159. Miraoui, H, Marie, PJ (2010) Pivotal role of Twist in skeletal biology and pathology. Gene 468: pp. 1-7
    160. Gunou, H, Kaabeche, K, Me, SL, Marie, PJ (2005) A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Hum Mol Genet 14: pp. 1429-1439
    161. Connerney, J, Andreeva, V, Leshem, Y, Mercado, MA, Dowell, K, Yang, X, Lindner, V, Friesel, RE, Spicer, DB (2008) Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol 318: pp. 323-334
    162. Miraoui, H, Sv猫re, N, Vaudin, P, Pag猫s, JC, Marie, PJ (2010) Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: implication of FGFR2 signaling. J Cell Biochem 110: pp. 1147-1154
    163. Haworth, CS, Webb, AK, Elkin, SL, Hodson, ME, Compston, JE, Selby, PL (2000) Cystic fibrosis related low bone density. Arch Dis Child 83: pp. 369
    164. Elkin, SL, Vedi, S, Bord, S, Garrahan, NJ, Hodson, ME, Compston, JE (2002) Histomorphometric analysis of bone biopsies from the iliac crest of adults with cystic fibrosis. Am J Respir Crit Care Med 166: pp. 1470-1474
    165. Henaff, C, Gimenez, A, Ha每, E, Marty, C, Marie, PJ, Jacquot, J (2012) The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 180: pp. 2068-2075
    166. Henaff, C, Ha每, E, Velard, F, Marty, C, Tabary, O, Marie, PJ, Jacquot, JP (2014) Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 184: pp. 1132-1141
    167. Marie, PJ, Fromigu, O, Modrowski, D Deregulation of osteoblast differentiation in primary bone cancers. In: Heymann, D eds. (2014) Bone cancer: primary bone cancers and bone metastases. Elseiver, New York
    168. Broadhead, ML, Clark, JC, Myers, DE, Dass, CR, Choong, PF (2011) The molecular pathogenesis of osteosarcoma: a review. Sarcoma 2011: pp. 959248
    169. Thomas, DM, Carty, SA, Piscopo, DM, Lee, JS, Wang, WF, Forrester, WC, Hinds, PW (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8: pp. 303-316
    170. Eferl, R, Wagner, EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: pp. 859-868
    171. Dani, N, Olivero, M, Mareschi, K, Duist, MM, Miretti, S, Cuvertino, S, Patane, S, Calogero, R, Ferracini, R, Scotlandi, K, Fagioli, F, Renzo, MF (2012) The MET oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. J Bone Miner Res 27: pp. 1322-1334
    172. Martin, JW, Zielenska, M, Stein, GS, Wijnen, AJ, Squire, JA (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011: pp. 282745
    173. Cao, Y, Zhou, Z, Crombrugghe, B, Nakashima, K, Guan, H, Duan, X, Jia, SF, Kleinerman, ES (2005) Osterix a transcription factor for osteoblast differentiation mediates antitumor activity in murine osteosarcoma. Cancer Res 65: pp. 1124-1128
    174. Basu-Roy, U, Seo, E, Ramanathapuram, L, Rapp, TB, Perry, JA, Orkin, SH, Mansukhani, A, Basilico, C (2012) Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 31: pp. 2270-2282
    175. Rettew, AN, Getty, PJ, Greenfield, EM (2014) Receptor tyrosine kinases in osteosarcoma: not just the usual suspects. Adv Exp Med Biol 804: pp. 47-66
    176. Zhang, H, Wu, H, Zheng, J, Yu, P, Xu, L, Jiang, P, Gao, J, Wang, H, Zhang, Y (2013) Transforming growth factor beta1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. Stem Cells 31: pp. 433-446
    177. Rikhof, B, Jong, S, Suurmeijer, AJ, Meijer, C, Graaf, WT (2009) The insulin-like growth factor system and sarcomas. J Pathol 217: pp. 469-482
    178. Lee, JA, Ko, Y, Kim, DH, Lim, JS, Kong, CB, Cho, WH, Jeon, DG, Lee, SY, Koh, JS (2012) Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma?. Cancer Res Treat 44: pp. 202-209
    179. Sv猫re, N, Dieudonn, FX, Marty, C, Modrowski, D, Patino-Garcia, A, Lecanda, F, Fromigu, O, Marie, PJ (2012) Targeting the E3 ubiquitin casitas B-lineage lymphoma decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 27: pp. 2108-2117
    180. Hassan, SE, Bekarev, M, Kim, MY, Lin, J, Piperdi, S, Gorlick, R, Geller, DS (2012) Cell surface receptor expression patterns in osteosarcoma. Cancer 118: pp. 740-749
    181. Jullien, N, Dieudonn, FX, Habel, N, Marty, C, Modrowski, D, Patino, A, Lecanda, F, Sv猫re, N, Marie, PJ (2013) ErbB3 silencing reduces osteosarcoma cell proliferation and tumor growth in vivo. Gene 521: pp. 55-61
    182. Shapovalov, Y, Benavidez, D, Zuch, D, Eliseev, RA (2010) Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma. Int J Cancer 127: pp. 67-76
    183. Haydon, RC, Deyrup, A, Ishikawa, A, Heck, R, Jiang, W, Zhou, L, Feng, T, King, D, Cheng, H, Breyer, B, Peabody, T, Simon, MA, Montag, AG, He, TC (2002) Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer 102: pp. 338-342
    184. Hoang, BH, Kubo, T, Healey, JH, Sowers, R, Mazza, B, Yang, R, Huvos, AG, Meyers, PA, Gorlick, R (2004) Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109: pp. 106-111
    185. Dieudonn, FX, Marion, A, Ha每, E, Marie, PJ, Modrowski, D (2010) High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res 70: pp. 5399-5408
    186. McQueen, P, Ghaffar, S, Guo, Y, Rubin, EM, Zi, X, Hoang, BH (2011) The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 11: pp. 1223-1232
    187. Guo, Y, Rubin, EM, Xie, J, Zi, X, Hoang, BH (2008) Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466: pp. 2039-2045
    188. Dieudonn, FX, Marion, A, Marie, PJ, Modrowski, D (2012) Targeted inhibition of T-cell factor activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res 27: pp. 2118-2129
    189. Rao-Bindal, K, Kleinerman, ES (2011) Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma 2011: pp. 679457
    190. Kresse, SH, Rydbeck, H, Skarn, M, Namlos, HM, Barragan-Polania, AH, Cleton-Jansen, AM, Serra, M, Liestol, K, Hogendoorn, PC, Hovig, E, Myklebost, O, Meza-Zepeda, LA (2012) Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS One 7: pp. e48262
    191. Gordon, JA, Montecino, MA, Aqeilan, RI, Stein, JL, Stein, GS, Lian, JB (2014) Epigenetic pathways regulating bone homeostasis: potential targeting for intervention of skeletal disorders. Curr Osteoporos Rep 12: pp. 496-506
    192. Cain, JE, McCaw, A, Jayasekara, WS, Rossello, FJ, Marini, KD, Irving, AT, Kansara, M, Thomas, DM, Ashley, DM, Watkins, DN (2013) Sustained low-dose treatment with the histone deacetylase inhibitor LBH589 induces terminal differentiation of osteosarcoma cells. Sarcoma 2013: pp. 608964
    193. Nugent, M (2014) MicroRNA function and dysregulation in bone tumors: the evidence to date. Cancer Manag Res 6: pp. 15-25
    194. Miao, J, Wu, S, Peng, Z, Tania, M, Zhang, C (2013) MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol 34: pp. 2093-2098
    195. Swami, A, Reagan, MR, Basto, P, Mishima, Y, Kamaly, N, Glavey, S, Zhang, S, Moschetta, M, Seevaratnam, D, Zhang, Y, Liu, J, Memarzadeh, M, Wu, J, Manier, S, Shi, J, Bertrand, N, Lu, ZN, Nagano, K, Baron, R, Sacco, A, Roccaro, AM, Farokhzad, OC, Ghobrial, IM (2014) Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 111: pp. 10287-10292
    196. Magnon, C, Lucas, D, Frenette, PS (2011) Trafficking of stem cells. Methods Mol Biol 750: pp. 3-24
    197. Lo Celso, C, Lin, CP, Scadden, DT (2011) In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc 6: pp. 1-14
    198. McGee-Lawrence, ME, Westendorf, JJ (2011) Histone deacetylases in skeletal development and bone mass maintenance. Gene 474: pp. 1-11
    199. Wijnen, AJ, Peppel, J, Leeuwen, JP, Lian, JB, Stein, GS, Westendorf, JJ, Oursler, MJ, Im, HJ, Taipaleenmaki, H, Hesse, E, Riester, S, Kakar, S (2013) MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 11: pp. 72-82
    200. Askmyr, M, Sims, NA, Martin, TJ, Purton, LE (2009) What is the true nature of the osteoblastic hematopoietic stem cell niche?. Trends Endocrinol Metab 20: pp. 303-309
    201. Wu, JY, Scadden, DT, Kronenberg, HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24: pp. 759-764
    202. Raaijmakers, MH, Mukherjee, S, Guo, S, Zhang, S, Kobayashi, T, Schoonmaker, JA, Ebert, BL, Al-Shahrour, F, Hasserjian, RP, Scadden, EO, Aung, Z, Matza, M, Merkenschlager, M, Lin, C, Rommens, JM, Scadden, DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464: pp. 852-857
    203. Shiozawa, Y, Taichman, RS (2012) Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 40: pp. 685-694
    204. Kode, A, Manavalan, JS, Mosialou, I, Bhagat, G, Rathinam, CV, Luo, N, Khiabanian, H, Lee, A, Murty, VV, Friedman, R, Brum, A, Park, D, Galili, N, Mukherjee, S, Teruya-Feldstein, J, Raza, A, Rabadan, R, Berman, E, Kousteni, S (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506: pp. 240-244
    205. Krevvata M, Silva BC, Manavalan JS, Galan-Diez M, Kode A, Matthews BG, Park D, Zhang CA, Galili N, Nickolas TL, Dempster DW, Dougall W, Teruya-Feldstein J, Economides AN, Kalajzic I, Raza A, Berman E, Mukherjee S, Bhagat G, Kousteni S (2014) Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood聽124:2834鈥?846
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700