SOXC Genes and the Control of Skeletogenesis
详细信息    查看全文
  • 作者:Véronique Lefebvre ; Pallavi Bhattaram
  • 关键词:Bone ; Cartilage ; Cell fate ; Progenitor/stem cell ; SOXC ; Transcription
  • 刊名:Current Osteoporosis Reports
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:14
  • 期:1
  • 页码:32-38
  • 全文大小:292 KB
  • 参考文献:1.Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.CrossRef PubMed PubMedCentral
    2.Binkley N, Adler R, Bilezikian JP. Osteoporosis diagnosis in men: the T-score controversy revisited. Curr Osteoporos Rep. 2014;12(4):403–9.CrossRef PubMed PubMedCentral
    3.Jackson RD, Mysiw WJ. Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative. Semin Reprod Med. 2014;32(6):454–62.CrossRef PubMed
    4.Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117–21.CrossRef PubMed
    5.Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell. 2002;3(2):167–70.CrossRef PubMed
    6.Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol. 2007;39(12):2195–214.CrossRef PubMed PubMedCentral
    7.Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140(20):4129–44.CrossRef PubMed
    8.Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15–30.CrossRef PubMed PubMedCentral
    9.Phochanukul N, Russell S. No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol. 2010;42(3):453–64.CrossRef PubMed
    10.Dy P, Penzo-Méndez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V. The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 2008;36(9):3101–17.CrossRef PubMed PubMedCentral
    11.van Beest M, Dooijes D, van De Wetering M, Kjaerulff S, Bonvin A, Nielsen O, et al. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J Biol Chem. 2000;275(35):27266–73.PubMed
    12.Hoser M, Potzner MR, Koch JM, Bösl MR, Wegner M, Sock E. Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol. 2008;28(15):4675–87.CrossRef PubMed PubMedCentral
    13.Mallampati S, Sun B, Lu Y, Ma H, Gong Y, Wang D, et al. Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1epsilon. Blood. 2014;123(26):4064–76.CrossRef PubMed PubMedCentral
    14.Kuo PY, Leshchenko VV, Fazzari MJ, Perumal D, Gellen T, He T, et al. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma. Oncogene. 2015;34(10):1231–40.CrossRef PubMed PubMedCentral
    15.van de Wetering M, Oosterwegel M, van Norren K, Clevers H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 1993;12(10):3847–54.PubMed PubMedCentral
    16.Lioubinski O, Müller M, Wegner M, Sander M. Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn. 2003;227(3):402–8.CrossRef PubMed
    17.Sun B, Mallampati S, Gong Y, Wang D, Lefebvre V, Sun X. Sox4 is required for the survival of pro-B cells. J Immunol. 2013;190(5):2080–9.CrossRef PubMed PubMedCentral
    18.Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de Wetering M, et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature. 1996;380(6576):711–4.CrossRef PubMed
    19.Sock E, Rettig SD, Enderich J, Bösl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 2004;24(15):6635–44.CrossRef PubMed PubMedCentral
    20.Bhattaram P, Penzo-Méndez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun. 2010;1:9.CrossRef PubMed
    21.Thein DC, Thalhammer JM, Hartwig AC, Crenshaw 3rd EB, Lefebvre V, Wegner M, et al. The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem. 2010;115(1):131–41.CrossRef PubMed PubMedCentral
    22.Potzner MR, Tsarovina K, Binder E, Penzo-Méndez A, Lefebvre V, Rohrer H, et al. Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development. 2010;137(5):775–84.CrossRef PubMed PubMedCentral
    23.Lin L, Lee VM, Wang Y, Lin JS, Sock E, Wegner M, et al. Sox11 regulates survival and axonal growth of embryonic sensory neurons. Dev Dyn. 2011;240(1):52–64.CrossRef PubMed
    24.Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem. 2013;288(25):18429–38.CrossRef PubMed PubMedCentral
    25.Paul MH, Harvey RP, Wegner M, Sock E. Cardiac outflow tract development relies on the complex function of Sox4 and Sox11 in multiple cell types. Cell Mol Life Sci. 2014;71(15):2931–45.CrossRef PubMed
    26.Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 2006;20(24):3475–86.CrossRef PubMed PubMedCentral
    27.Bergsland M, Ramsköld D, Zaouter C, Klum S, Sandberg R, Muhr J. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 2011;25(23):2453–64.CrossRef PubMed PubMedCentral
    28.Schilham MW, Moerer P, Cumano A, Clevers HC. Sox-4 facilitates thymocyte differentiation. Eur J Immunol. 1997;27(5):1292–5.CrossRef PubMed
    29.Mu L, Berti L, Masserdotti G, Covic M, Michaelidis TM, Doberauer K, et al. SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci. 2012;32(9):3067–80.CrossRef PubMed PubMedCentral
    30.Penzo-Méndez AI. Critical roles for SoxC transcription factors in development and cancer. Int J Biochem Cell Biol. 2010;42(3):425–8.CrossRef PubMed PubMedCentral
    31.Jafarnejad SM, Ardekani GS, Ghaffari M, Li G. Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis. Cell Mol Life Sci. 2013;70(15):2677–96.CrossRef PubMed
    32.Lu TX, Li JY, Xu W. The role of SOX11 in mantle cell lymphoma. Leuk Res. 2013;37(11):1412–9.CrossRef PubMed
    33.•
Vervoort SJ, van Boxtel R, Coffer PJ. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene. 2013;32(29):3397–409. This paper reviews current knowledge on SOXC proteins in various types of cancer.CrossRef PubMed
34.Song GD, Sun Y, Shen H, Li W. SOX4 overexpression is a novel biomarker of malignant status and poor prognosis in breast cancer patients. Tumour Biol. 2015;36(6):4167–73.CrossRef PubMed
35.Ramezani-Rad P, Geng H, Hurtz C, Chan LN, Chen Z, Jumaa H, et al. SOX4 enables oncogenic survival signals in acute lymphoblastic leukemia. Blood. 2013;121(1):148–55.CrossRef PubMed PubMedCentral
36.Brennan DJ, Ek S, Doyle E, Drew T, Foley M, Flannelly G, et al. The transcription factor Sox11 is a prognostic factor for improved recurrence-free survival in epithelial ovarian cancer. Eur J Cancer. 2009;45(8):1510–7.CrossRef PubMed
37.Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res. 2009;69(20):7953–9.CrossRef PubMed
38.Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23(6):768–83.CrossRef PubMed
39.Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T, et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci U S A. 2009;106(10):3788–93.CrossRef PubMed PubMedCentral
40.Moreno CS. The sex-determining region Y-box 4 and homeobox C6 transcriptional networks in prostate cancer progression: crosstalk with the Wnt, Notch, and PI3K pathways. Am J Pathol. 2010;176(2):518–27.CrossRef PubMed PubMedCentral
41.Zhang J, Jiang H, Shao J, Mao R, Liu J, Ma Y, et al. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis. BMC Neurol. 2014;14:207.CrossRef PubMed PubMedCentral
42.Lefebvre V, Bhattaram P. Vertebrate skeletogenesis. Curr Top Dev Biol. 2010;90:291–317.CrossRef PubMed PubMedCentral
43.Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334.CrossRef PubMed PubMedCentral
44.•
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817–31. This paper provides a comprehensive overview of current knowledge of molecular mechanisms controlling skeletogenesis.CrossRef PubMed PubMedCentral
45.Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol. 2009;9:20.CrossRef PubMed PubMedCentral
46.Kan A, Ikeda T, Fukai A, Nakagawa T, Nakamura K, Chung UI, et al. SOX11 contributes to the regulation of GDF5 in joint maintenance. BMC Dev Biol. 2013;13:4.CrossRef PubMed PubMedCentral
47.•
Bhattaram P, Penzo-Méndez A, Kato K, Bandyopadhyay K, Gadi A, Taketo MM, et al. SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis. J Cell Biol. 2014;207(5):657–71. This paper demonstrates the importance of SOXC proteins and their functional interactions with canonical WNT signaling in early skeletogenesis.CrossRef PubMed PubMedCentral
48.Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A. 2002;99(7):4397–402.CrossRef PubMed PubMedCentral
49.•
Kato K, Bhattaram P, Penzo-Méndez A, Gadi A, Lefebvre V. SOXC transcription factors induce cartilage growth plate formation in mouse embryos by promoting noncanonical WNT signaling. J Bone Miner Res. 2015;30(9):1560–71. This paper demonstrates the importance of SOXC proteins in establishing cartilage growth plates and identifies non-canonical WNT signaling as a key mechanism whereby the proteins mediate this function.CrossRef PubMed PubMedCentral
50.Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D, et al. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci. 2007;120(Pt 16):2785–95.CrossRef PubMed
51.Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT, et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J Bone Miner Res. 2011;26(8):1793–801.CrossRef PubMed
52.Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372.CrossRef PubMed PubMedCentral
53.•Tsurusaki Y, Koshimizu E, Ohashi H, Phadke S, Kou I, Shiina M, et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun. 2014;5:4011. This paper is the first one to demonstrate that SOX11 mutations can cause a congenital disease in humans.CrossRef PubMed
54.Verloes A, Bonneau D, Guidi O, Berthier M, Oriot D, Van Maldergem L, et al. Brachymorphism-onychodysplasia-dysphalangism syndrome. J Med Genet. 1993;30(2):158–61.CrossRef PubMed PubMedCentral
55.Billiard J, Moran RA, Whitley MZ, Chatterjee-Kishore M, Gillis K, Brown EL, et al. Transcriptional profiling of human osteoblast differentiation. J Cell Biochem. 2003;89(2):389–400.CrossRef PubMed
56.•Gadi J, Jung SH, Lee MJ, Jami A, Ruthala K, Kim KM, et al. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J Biol Chem. 2013;288(35):25400–13. This paper and the next two papers are the first ones to suggest that SOX11 has key functions in skeletal progenitors and the osteoblast lineage.CrossRef PubMed PubMedCentral
57.•Choi MK, Seong I, Kang SA, Kim J. Down-regulation of Sox11 is required for efficient osteogenic differentiation of adipose-derived stem cells. Mol Cells. 2014;37(4):337–44. See the comment made for reference 56.CrossRef PubMed PubMedCentral
58.•Xu L, Huang S, Hou Y, Liu Y, Ni M, Meng F, et al. Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs. FASEB J. 2015;29(4):1143–52. See the comment made for reference 56.CrossRef PubMed
  • 作者单位:Véronique Lefebvre (1)
    Pallavi Bhattaram (1)

    1. Department of Cellular & Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
  • 刊物主题:Orthopedics; Epidemiology;
  • 出版者:Springer US
  • ISSN:1544-2241
  • 文摘
    The SOXC group of transcription factors, composed of SOX4, SOX11, and SOX12, has evolved to fulfill key functions in cell fate determination. Expressed in many types of progenitor/stem cells, including skeletal progenitors, SOXC proteins potentiate pathways critical for cell survival and differentiation. As skeletogenesis unfolds, SOXC proteins ensure cartilage primordia delineation by amplifying canonical WNT signaling and antagonizing the chondrogenic action of SOX9 in perichondrium and presumptive articular joint cells. They then ensure skeletal elongation by inducing growth plate formation via enabling non-canonical WNT signaling. Human studies have associated SOX4 with bone mineral density and fracture risk in osteoporotic patients, and SOX11 with Coffin-Siris, a syndrome that includes skeletal dysmorphism. Meanwhile, in vitro and mouse studies have suggested important cell-autonomous roles for SOXC proteins in osteoblastogenesis. We here review current knowledge and gaps in understanding of SOXC protein functions, with an emphasis on the skeleton and possible links to osteoporosis.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700