Conceptual study of lunar-based SAR for global change monitoring
详细信息    查看全文
  • 作者:HuaDong Guo (1)
    YiXing Ding (1) (2)
    Guang Liu (1)
    DaoWei Zhang (1)
    WenXue Fu (1)
    Lu Zhang (1)
  • 关键词:Earth observation ; global change ; Lunar ; based SAR
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1771-1779
  • 全文大小:1,284 KB
  • 参考文献:1. Bruno D, Hobbs S, Ottavianelli G. 2006. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications. Acta Astronaut, 59: 149-56 CrossRef
    2. Bruno D, Hobbs S. 2010. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects. IEEE Trans Geosci Remote Sens, 48: 2924-929 CrossRef
    3. Carruthers G, Page T. 1972. Apollo 16 far-ultraviolet camera/spectrograph: Earth observations. Science, 177: 788-91 CrossRef
    4. Curland J, Mcdonough R. 1991. Synthetic Aperture Radar Systems and Signal Processing. New York: John Wiley & Sons Inc
    5. Fornaro G, Franceschetti G, Lombardini F, et al. 2010. Potentials and limitations of Moon-borne SAR imaging. IEEE Trans Geosci Remote Sens, 48: 3009-019 CrossRef
    6. Guo H. 2000. Radar for Earth Observation: Theory and Applications. Beijing: Science Press
    7. Henderson F, Lewis A. 1998. Manual of Remote Sensing: Principles and Applications of Imaging Radar. 3rd ed. New York: John Wiley & Sons Inc
    8. Kiyo T, Jean P. 1983. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens, GE-21: 324-29 CrossRef
    9. Madsen S, Edelstein W, DiDomenico L, et al. 2001. A geosynchronous synthetic aperture radar: For tectonic mapping, disaster management and measurements of vegetation and soil moisture. IGARSS-1. 447-49
    10. Moccia A, Renga A. 2010. Synthetic aperture radar for Earth observation from a lunar base: Performance and potential applications. IEEE Trans Aero Elec Sys, 46: 1034-051 CrossRef
    11. Ouyang Z. 2005. Introduction to Lunar Science. Beijing: China Astron Publ House
    12. Palle E, Goode P R. 2009. The lunar terrestrial observatory: Observing the Earth using photometers on the Moon’s surface. Adv Space Res, 43: 1083-089 CrossRef
    13. Rignot E, Mouginot J, Scheuchl B. 2011. Ice flow of the Antarctic ice sheet. Science, 333: 1427-430 CrossRef
    14. Rosenqvist A, Shimada M. Chapman B, et al. 2000. The global rain forest mapping project—A review. Int J Remote Sens, 21: 1375-387 CrossRef
    15. Rosenqvist A, Shimada M, Ito N, et al. 2007. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens, 45: 3307-316 CrossRef
    16. Shi J C, Du Y, Du J Y, et al. 2012. Progresses on microwave remote sensing of land surface parameters. Sci China Earth Sci, 55: 1052-078 CrossRef
    17. Steffen W, Sanderson A, Tyson P, et al. 2004. Global Change and The Earth System: A Planet Under Pressure. 5th ed. New York: Springer
    18. Zhang D W, Guo H D, Liu G, et al. 2011. Sun-Earth-Moon system simulation technology based on OpenGL. 24th China Symposium on Space Exploration
  • 作者单位:HuaDong Guo (1)
    YiXing Ding (1) (2)
    Guang Liu (1)
    DaoWei Zhang (1)
    WenXue Fu (1)
    Lu Zhang (1)

    1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China
    2. College of Resources and Environment University of Chinese Academy of Sciences, Beijing, 100049, China
  • ISSN:1869-1897
文摘
As an active microwave remote sensing imaging sensor, Synthetic Aperture Radar (SAR) plays an important role in earth observation. Here we establish a SAR system based on the platform of the moon. This will aid large-scale, constant, and long-term dynamic Earth observations to better meet the needs of global change research and to complement the space borne and airborne earth observations. Lunar-based SAR systems have the characteristics of high resolution and wide swath width. The swath width could be thousands of kilometers in the stripe mode and it could cover 40% of earth’s surface with 10 meters or even higher spatial resolution in the scanning mode. Using the simplified observation model, here we quantitatively analyze the spatial resolution and coverage area of lunar-based SAR and simulate the observation on the Qinghai-Tibet plateau and the Amazon plain. The results show that this system could provide near 100% daily coverage of the Qinghai-Tibet plateau, whereas 40% to 70% daily coverage of the Amazon plain. Lunar-based SAR could provide large-scale, long-term and stable time series data in order to support future research of global change.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700