Effects of FLiNaK infiltration on thermal expansion behavior of graphite
详细信息    查看全文
  • 作者:Wei Qi ; Zhoutong He ; Hui Tang ; Baoliang Zhang ; Can Zhang…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:April 2017
  • 年:2017
  • 卷:52
  • 期:8
  • 页码:4621-4634
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
The changes in both the crystallographic coefficient of thermal expansion (CCTE) and the coefficient of thermal expansion (CTE) of FLiNaK-infiltrated nuclear graphite were studied using in situ-heating X-ray diffraction analysis and horizontal push-rod dilatometry. It was found that, at temperatures lower than the melting point of FLiNaK, the CCTE of the d(002) spacing of graphite decreases with an increase in the weight of the graphite sample because of FLiNaK infiltration. On the other hand, the CTE of bulk graphite increases after molten salt infiltration. The CCTEs of the as-prepared FLiNaK salt, and the salt in the graphite pores were compared. The decrease in the CCTE of the FLiNaK salt after it had infiltrated into the graphite pores confirmed that interactions occur between the graphite and the salt. These interactions are probably induced by the difference in the CTEs of graphite and the solidified salt. Further, it is likely that the crystallization pressure also plays an important role here. Thus, both the causes need to be considered when using nuclear graphite in molten salt reactors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700