Adhesion, Modulus and Thermal Conductivity of Porous Epoxy Film on Silicon Wafers
详细信息    查看全文
  • 作者:K. Jagannadham
  • 关键词:Adhesion ; porous polymer ; modulus ; thermal conductivity
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:45
  • 期:11
  • 页码:5877-5884
  • 全文大小:894 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
  • 卷排序:45
文摘
An 8 μm epoxy film deposited on a 350 μm Si (100) Si wafer with a 0.4 μm Au transducer film deposited on top of the polymer film was used to evaluate the thermal conductivity, the modulus of the porous film, and the initiation of spalling upon laser beam irradiation on the back side of the Si wafer. The polymer films were characterized for pore microstructure using scanning electron microscopy and energy dispersive spectrometry. The polymer films were characterized using transient thermo reflectance (TTR) with laser beams illuminating the Au layer. The TTR signal from the polymer film showed only the thermal component and was characteristic of variations associated with thermal conduction into the film. To induce spalling, the back side was illuminated with a Nd-YAG laser beam with a 532 nm wavelength, pulse energy density 1.8 J/cm2, and a repetition rate of 10 Hz for 10 s in conjunction with TTR measurements on the front side. The TTR signal from the polymer film subjected to laser beam incidence from the backside of the Si wafer showed both the thermal and the acoustic components. The acoustic component was used to detect the initial stages of spalling or delamination. The acoustic oscillations were modeled using a modified wave equation to determine the velocity of sound and the modulus of the film. The results were also used to determine the effect of porosity on the modulus of the polymer film. The TTR signal was found to be very sensitive to detection of delamination without complete separation of the film.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700