Parallel ADI Preconditioners for All-Scale Atmospheric Models
详细信息    查看全文
  • 关键词:Deflation preconditioners ; ADI ; EULAG
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9574
  • 期:1
  • 页码:607-618
  • 全文大小:385 KB
  • 参考文献:1.Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 742–762 (1968)MathSciNet CrossRef
    2.Douglas, J.J.: On the numerical integration of \(u_t= u_{xx}+ u_{yy}\) by implicit methods. SIAM J. 3(1), 42–65 (1955)
    3.Dutton, J.A.: The Ceaseless Wind. McGraw-Hill, New York (1976)
    4.Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)MathSciNet CrossRef MATH
    5.Jablonowski, C., Williamson, D.L.: A baroclinic instability test case for atmospheric model dynamical cores. Q. J. Roy. Meteorol. Soc. 132(621C), 2943–2975 (2006)CrossRef
    6.Lipps, F.B., Hemler, R.S.: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39(10), 2192–2210 (1982)CrossRef
    7.Matejczyk, B.: Preconditioning in mathematical weather forecasts. Master’s thesis, University of Warsaw (2014)
    8.Peaceman, D.W., Racheford, H.H.: The numerical solution of parabolic and elliptic numerical differential equations. SIAM J. 3(1), 28–41 (1955)MathSciNet MATH
    9.Piotrowski, Z.P., Smolarkiewicz, P.K., Malinowski, S.P., Wyszogrodzki, A.A.: On numerical realizability of thermal convection. J. Comp. Phys. 228(17), 6268–6290 (2009)MathSciNet CrossRef MATH
    10.Piotrowski, Z.P., Wyszogrodzki, A.A., Smolarkiewicz, P.K.: Towards petascale simulation of atmospheric circulations with soundproof equations. Acta Geophys. 59(6), 1294–1311 (2011)CrossRef
    11.Prusa, J.M., Smolarkiewicz, P.K.: An all-scale anelastic model for geophysical flows: dynamic grid deformation. J. Comput. Phys. 190(2), 601–622 (2003)MathSciNet CrossRef MATH
    12.Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: EULAG, a computational model for multiscale flows. Comput. Fluids 37(9), 1193–1207 (2008)MathSciNet CrossRef MATH
    13.Prusa, J.M., Gutowski, W.J.: Multi-scale waves in sound-proof global simulations with EULAG. Acta Geophys. 59(6), 1135–1157 (2011)CrossRef
    14.Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNet CrossRef MATH
    15.Skamarock, W.C., Smolarkiewicz, P.K., Klemp, J.B.: Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Weather Rev. 125(4), 587–599 (1997)CrossRef
    16.Smolarkiewicz, P.K., Grubisic, V., Margolin, L.G.: On forward-in-time differencing for fluids: stopping criteria for iterative solutions of anelastic pressure equations. Mon. Weather Rev. 125(4), 647–654 (1997)CrossRef
    17.Smolarkiewicz, P.K., Margolin, L.G., Wyszogrodzki, A.A.: A class of nonhydrostatic global models. J. Atmos. Sci. 58(4), 349–364 (2001)CrossRef
    18.Smolarkiewicz, P.K., Temperton, C., Thomas, S.J., Wyszogrodzki, A.A.: Spectral preconditioners for nonhydrostatic atmospheric models: extreme applications. In: Proceedings of the ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, UK, pp. 203–220 (2004)
    19.Smolarkiewicz, P.K., Charbonneau, P.: EULAG, a computational model for multiscale flows: an MHD extension. J. Comput. Phys. 236, 608–623 (2013)MathSciNet CrossRef
    20.Smolarkiewicz, P.K., Kühnlein, C., Wedi, N.P.: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys. 263, 185–205 (2014)MathSciNet CrossRef
    21.Smolarkiewicz, P., Margolin, L.: Variational solver for elliptic problems in atmospheric flows. Appl. Math. Comp. Sci 4(4), 527–551 (1994)MathSciNet MATH
    22.Smolarkiewicz, P., Margolin, L.: Variational methods for elliptic problems in fluid models. In: Proceedings of ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models, pp. 137–159 (2000)
    23.Thomas, S.J., Hacker, J.P., Smolarkiewicz, P.K., Stull, R.B.: Spectral preconditioners for nonhydrostatic atmospheric models. Mon. Weather Rev. 131(10), 2464–2478 (2003)CrossRef
    24.Zhang, Y., Cohen, J., Owens, J.D.: Fast tridiagonal solvers on the GPU. ACM Sigplan Not. 45(5), 127–136 (2010)CrossRef
  • 作者单位:Zbigniew P. Piotrowski (19)
    Bartlomiej Matejczyk (20)
    Leszek Marcinkowski (21)
    Piotr K. Smolarkiewicz (22)

    19. Institute of Meteorology and Water Management - National Research Institute, Podlesna 61, 01-673, Warsaw, Poland
    20. Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria
    21. Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
    22. European Centre for Medium-Range Weather Forecasts, Reading, UK
  • 丛书名:Parallel Processing and Applied Mathematics
  • ISBN:978-3-319-32152-3
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Effective preconditioning lies at the heart of multiscale flow simulation, including a broad range of geoscientific applications that rely on semi-implicit integrations of the governing PDEs. For such problems, conditioning of the resulting sparse linear operator directly responds to the squared ratio of largest and smallest spatial scales represented in the model. For thin-spherical-shell geometry of the Earth atmosphere the condition number is enormous, upon which implicit preconditioning is imperative to eliminate the stiffness resulting from relatively fine vertical resolution. Furthermore, the anisotropy due to the meridians convergence in standard latitude-longitude discretizations becomes equally detrimental as the horizontal resolution increases to capture nonhydrostatic dynamics. Herein, we discuss a class of effective preconditioners based on the parallel ADI approach. The approach has been implemented in the established high-performance all-scale model EULAG with flexible computational domain distribution, including a 3D processor array. The efficacy of the approach is demonstrated in the context of an archetypal simulation of global weather.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700