Spatial–temporal modellization of the \(\hbox {NO}_{2}\) concentration data
详细信息    查看全文
  • 作者:Raquel Menezes ; Helena Piairo ; Pilar García-Soidán…
  • 关键词:\(\hbox {NO}_{2}\) ; ; Geostatistics ; Time series analysis ; Space–time analysis
  • 刊名:Statistical Methods & Applications
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:107-124
  • 全文大小:1,936 KB
  • 参考文献:Bivand R, Pebesma E, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New YorkMATH
    Bogaert P (1996) Comparison of kriging techniques in a space–time context. Math Geol 28:73–86CrossRef MathSciNet MATH
    Bruno F, Guttorp P, Sampson P, Cocchi D (2009) A simple non-separable, non-stationary spatiotemporal model for ozone. Environ Ecol Stat 16:515–529CrossRef MathSciNet
    Calculli C, Fasso A, Finazzi F, Pollice A, Turnone A (2015) Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy. Environmetrics 26:406–417CrossRef MathSciNet
    Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio–temporal models for particulate matter in piemonte. Environmetrics 22:985–996CrossRef MathSciNet
    Carslaw DC (2005) Evidence of an increasing no2/nox emissions ratio from road traffic emissions. Atmos Environ 39:4793–4802CrossRef
    Cressie N (1990) The origins of kriging. Math Geol 22:239–252CrossRef MathSciNet MATH
    Cressie N, Huang H (1999) Classes of nonseparable, spatio–temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340CrossRef MathSciNet MATH
    Cressie N, Wikle C (2011) Statistics for spatio–temporal data. Wiley, New YorkMATH
    De Cesare L, Myers D, Posa D (2001) Estimating and modeling space–time correlation structures. Stat Probab Lett 51:9–14CrossRef MATH
    De Gruijter J, Brus D, Bierkens M, Knotters M (2006) Sampling for natural resource monitoring. Springer, GermanyCrossRef
    De Iaco S, Posa D (2012) Predicting spatio–temporal random fields: some computational aspects. Comput Geosci 41:12–24CrossRef
    Dimitrakopoulos R, Luo X (1994) Spatiotemporal modeling: covariances and ordinary kriging systems. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer Academic Publishers, Dordrecht, pp 88–93CrossRef
    Dimitrakopoulos R, Luo X (1997) Spatiotemporal modeling: covariances and ordinary kriging systems. In: Baafi E, Scofield N (eds) Geostatistics Wollongong’96. Kluwer Academic Publishers, Dordrecht, pp 138–149
    Fernández-Casal R, González-Manteiga W, Febrero-Bande M (2003) Flexible spatio–temporal stationary variogram models. Stat Comput 13:127–136CrossRef MathSciNet
    Fox J (2008) Applied regression analysis and generalized linear models. SAGE Publications, Thousand Oaks
    Gneiting T, Genton MG, Guttorp P (2007) Statistical methods for spatio–temporal systems. Chapman and Hall, Cambridge
    Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York
    Grice S, Stedman J, Kent A, Hobson M, Norris J, Abbott J, Cooke S (2009) Recent trends and projections of primary no2 emissions in europe. Atmos Environ 43:2154–2167CrossRef
    Heuvelink G, Griffith D (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42:161–179CrossRef
    Host G, Omre H, Switzer P (1995) Spatial interpolation errors for monitoring data. J Am Stat Assoc 90:853–861MathSciNet
    Isaaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, New York
    Kyriakidis P, Journel A (1999) Geostatistical space–time models: a review. Math Geol 31:651–684CrossRef MathSciNet MATH
    Lewne M, Cyrys J, Meliefste K, Hoek G, Brauer M, Fischer P, Gehring U, Heinrich J, Brunekreef B, Bellander T (2004) Spatial variation in nitrogen dioxide in three European areas. Sci Total Environ 332:217–230CrossRef
    Lindley S, Walsh T (2005) Inter-comparison of interpolated background nitrogen dioxide concentrations across greater manchester, uk. Atmos Environ 39:2709–2724CrossRef
    Myers D (2004) Estimating and modeling space-time variograms. In: McRoberts R (ed) Proceedings of the joint meeting of TIES-2004 and ACCURACY-2004
    Porcu E, Mateu J, Saura F (2008) New classes of covariance and spectral density functions for spatio–temporal modelling. Stoch Environ Res Risk Assess 22:65–79CrossRef MathSciNet MATH
    R Team D (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing
    Rodriguez-Iturbe I, Mejía J (1974) The design of rainfall networks in time and space. Water Resour Res 10:713–728CrossRef
    Rouhani S, Hall T (1989) Space–time kriging of groundwater data. In: Armstrong M (ed) Geostatistics. Kluwer Academic Publishers, Dordrecht, pp 639–651CrossRef
    Saiz-Lopez A, Adame J, Notario A, Poblete J, Bolívar J, Albaladejo J (2009) Year-round observations of no, no2, o3, so2 and toluene. Water Air Soil Pollut 200:277–288CrossRef
    Shaddick G, Yan H, Salway R, Vienneau D, Kounali D, Briggs D (2013) Large-scale bayesian spatial modelling of air pollution for policy support. J Appl Stat 40:777–794CrossRef MathSciNet
    Stedman J, Goodwin J, King K, Murrells T, Bush T (2001) An empirical model for predicting urban roadside nitrogen dioxide concentrations in UK. Atmos Environ 35:1451–1463CrossRef
    Stein M (2005) Space-time covariance functions. J Am Stat Assoc 469:310–320CrossRef
    Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B 36:111–133MATH
    WHO (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. World Health Organization, Germany
  • 作者单位:Raquel Menezes (1)
    Helena Piairo (1)
    Pilar García-Soidán (2)
    Inês Sousa (1)

    1. Centre of Mathematics, University of Minho, Campus of Azurem, 4800-058, Guimarães, Portugal
    2. Department of Statistics and O.R., University of Vigo, Campus of A Xunqueira, 36005, Pontevedra, Spain
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Statistics
    Statistics
    Statistics for Business, Economics, Mathematical Finance and Insurance
    Economic Theory
  • 出版者:Physica Verlag, An Imprint of Springer-Verlag GmbH
  • ISSN:1613-981X
文摘
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of \(\hbox {NO}_{2}\) levels, by using geostatistical approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space–time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This methodology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700