Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities
详细信息    查看全文
  • 作者:Alberto Maceda-Veiga ; Helena Basas ; Gerard Lanzaco ; Miquel Sala…
  • 关键词:Weed ; Exotic plant ; Decomposition ; Alien effects ; Biodiversity ; Community structure ; Body size
  • 刊名:Biological Invasions
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 页码:731-749
  • 全文大小:1,376 KB
  • 参考文献:A’Bear AD, Boddy L, Jones TH (2012) Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob Change Biol 18:1823–1832CrossRef
    A’Bear AD, Johnson SN, Jones TH (2013) Putting the ‘upstairs–downstairs’ into ecosystem service: what can aboveground–belowground ecology tell us? Biol Control 75:97–107CrossRef
    Aguiar FCF, Ferreira MT (2013) Plant invasions in the rivers of the Iberian Peninsula, South-Western Europe–a review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 147
    Bardgett RD (2005) The biology of soil: a community and ecoystem approach. Oxford University Press, Oxford, p 256CrossRef
    Bastow JL, Preisser EL, Strong DR (2008) Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biol Invasions 10:191–199CrossRef
    Baxter CV, Fausch KD, Carl Saunders W (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220CrossRef
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300
    Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembolan based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725CrossRef
    Crowther TW, A’Bear D (2012) Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol 25:277–281CrossRef
    David JF (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118CrossRef
    Di Castri F, Hansen AJ, Debussche M (1990) Biological invasions in Europe and the Mediterranean Basin. Springer, Netherlands, p 352CrossRef
    Dudley TL (2000) Arundo donax. In: Bossard CC, Randall JM, Hoshovsky MC (eds) Invasive plants of Calfornia’s wildlands. University of California Press, Berkeley, pp 53–58
    Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523CrossRef
    Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRef
    Eisenbeis G, Wichard W (2012) Atlas on the biology of soil arthropods. Springer Science and Business Media, Berlin, p 437
    Endlweber K, Ruess L, Scheu S (2009) Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol Biochem 41:1151–1154CrossRef
    Enghoff H, Serra A, Martínez H (2009) Una nueva especie de Tarracoblaniulus Mauriès & Vicente, 1977: descripción, desarrollo postembrionario, ciclo vital y distribución espacial (Diplopoda, Julida, Blaniulidae). Graellsia 65:3–17CrossRef
    Figuerola B, Maceda-Veiga A, de Sostoa A (2012) Assessing the effects of sewage effluents in a Mediterranean creek: fish population features and biotic indices. Hydrobiologia 694:75–86CrossRef
    Font X (2014) Mòdul Flora i Vegetació. Banc de Dades de Biodiversitat de Catalunya (In Catalan). Generalitat de Catalunya i Universitat de Barcelona. http://​biodiver.​bio.​ub.​es/​biocat/​homepage.​html
    Frampton GK, Van Den Brink PJ, Gould PJ (2000) Effects of spring drought and irrigation on farmland arthropods in southern Britain. J Appl Ecol 37:865–883CrossRef
    Ganihar SR (1997) Biomass estimates of terrestrial arthropods based on body length. J Biosci 22:219–224CrossRef
    Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81CrossRef
    Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380CrossRef PubMed
    Going BM, Dudley TL (2008) Invasive riparian plant litter alters aquatic insect growth. Biol Invasions 10:1041–1051CrossRef
    González-Moreno P, Pino J, Gassó N, Vilà M (2013) Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol Invasions 15:547–557CrossRef
    González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20:720–731CrossRef
    Gowing G, Recher ΗF (1985) Further comments on Length-Weight relationships of invertebrates. Aust J Ecol 10:195CrossRef
    Greenwood H, O’Dowd DJ, Lake PS (2004) Willow (Salix × rubens) invasion of the riparian zone in south-eastern Australia: reduced abundance and altered composition of terrestrial arthropods. Divers Distrib 10:485–492CrossRef
    Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JM, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039CrossRef PubMed
    Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14(1):42–46CrossRef PubMed
    Harris RJ, Toft RJ, Dugdale JS, Williams PA, Rees JS (2004) Insect assemblages in a native (kanuka-Kunzea ericoides) and an invasive (gorse-Ulex europaeus) shrubland. New Zeal J Ecol 28:35–47
    Hedde M, van Oort F, Boudon E, Abonnel F, Lamy I (2013) Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass Bioenerg 55:122–129CrossRef
    Hengstum T, Hooftman DA, Oostermeijer JGB, Tienderen PH (2014) Impact of plant invasions on local arthropod communities: a meta-analysis. J Ecol 102:4–11CrossRef
    Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177CrossRef
    Honnay O, Endels P, Vereecken H, Hermy M (1999) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141CrossRef
    Khuzhaev VU, Aripova SF (1994) Dynamics of the accumulation of the alkaloids of Arundo donax. Chem Nat Comp 30:637–638CrossRef
    Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RA, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRef
    Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174CrossRef PubMed
    Lowe S, Browne M, Boudjelas S, de Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland, New Zealand. http://​www.​issg.​org/​publications.​htm#worst100 )
    Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314CrossRef
    Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiv Conserv 11:1397–1401CrossRef
    Maceda-Veiga A, de Sostoa A, Sánchez-Espada S (2013) Factors affecting the establishment of the invasive crayfish Procambarus clarkii (Crustacea, Decapoda) in the Mediterranean rivers of the northeastern Iberian Peninsula. Hydrobiologia 703:33–45CrossRef
    Mgobozi MP, Somers MJ, Dippenaar-Schoeman AS (2008) Spider responses to alien plant invasion: the effect of short- and long-term Chromolaena odorata invasion and management. J Appl Ecol 45:1189–1197
    Molinari NA, D’Antonio CM (2014) Structural, compositional and trait differences between native-and non-native-dominated grassland patches. Funct Ecol 28(3):745–754CrossRef
    Moreno CE (2001) Manual de métodos para medir la biodiversidad (In Spanish). Manuales y Tesis Sociedad Entomológica Aragonesa, Zaragoza
    Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212CrossRef
    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2013) Package ‘vegan’. R software
    Pennington DN, Hansel J, Blair RB (2008) The conservation value of urban riparian areas for landbirds during spring migration: land cover, scale, and vegetation effects. Biol Conserv 141(5):1235–1248CrossRef
    Poulette MM, Arthur MA (2011) The impact of the invasive shrub Lonicera maackii on the decomposition dynamics of a native plant community. Ecol Appl 22:412–424CrossRef
    R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. www.​R-project.​org
    Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Let 9:603–614CrossRef
    Riffaldi R, Saviozzi A, Cardelli R, Bulleri F, Angelini L (2010) Comparison of soil organic-matter characteristics under the energy crop giant reed, cropping sequence and natural grass. Commun Soil Sci Plan 41:173–180CrossRef
    Romaniszyn ED, Hutchens JJ, Bruce Wallace J (2007) Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshw Biol 52(1):1–11CrossRef
    Sabu TK, Shiju RT, Vinod KV, Nithya S (2011) A comparison of the pitfall trap, Winkler extractor and Berlese funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J Insect Sci 11:1–19CrossRef
    Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954CrossRef
    Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJ (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRef PubMed
    Serra A, Guerrero L (2010) Comunitats d’artròpodes epiedàfics de les Planes de Son i la mata de València (In Catalan). In: Els sistemes naturals de les Planes de Son i la mata de València. Treballs de la Institució Catalana d’Història Natural. pp. 629–653
    Setälä H, Berg PM, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 236–249CrossRef
    Simão M, Flory SL, Rudgers JA (2010) Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels. Oikos 119:1553–1562CrossRef
    Sutherland RA (1998) Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389:153–167CrossRef
    Symondson WOC, Glen DM, Erickson ML et al (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crop Investigations using monoclonal antibodies. Mol Ecol 9:1279–1292CrossRef PubMed
    Tajovsky K (1992) Feeding biology of the millipede Glomeris hexasticha. Adv Myriapodol 10:305–311
    ter Braak CJ, Šmilauer P (2014) Topics in constrained and unconstrained ordination. Plant Ecol 1–14
    Thomas R, Vaughan I, Lello J (2013) Data analysis with R statistical software. A guidebook for scientists. Eco-explore Press. p. 149
    Torres PA, Abril AB, Bucher EH (2005) Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol Biochem 37:49–54CrossRef
    Tuttle NC, Beard KH, Pitt WC (2009) Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests. Biol Invasions 11:845–855CrossRef
    Vilà M, Espinar J, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRef PubMed
    Walsh C, Mac Nally R (2013) Package hier.part: hierarchical partitioning, version 1.0-4. R Foundation for Statistical Computing, Vienna, Austria
    Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing UNSW Press, New York
    Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829CrossRef
    Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRef PubMed
    Wilkie L, Cassis G, Gray M (2007) The effects on terrestrial arthropod communities of invasion of a coastal heath ecosystem by the exotic weed bitou bush (Chrysanthemoides monilifera ssp. rotundata L.). Biol Invasions 9:477–498CrossRef
    Woodcock BA, Potts SG, Tscheulin T et al (2009) Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J Appl Ecol 46:920–929CrossRef
    Woodward GB, Ebenman M, Emmerson J, Montoya JM, Olesen M, Valido A, Warren PH (2005) Body size in ecological networks. Trend Ecol Evol 20:402–409CrossRef
    Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their Islands. Biol Inv 17:3049–3061CrossRef
    Zuefle ME, Brown WP, Tallamy DW (2008) Effects of non-native plants on the native insect community of Delaware. Biol Invasion 10:1159–1169CrossRef
  • 作者单位:Alberto Maceda-Veiga (1) (2)
    Helena Basas (3)
    Gerard Lanzaco (4)
    Miquel Sala (4)
    Adolfo de Sostoa (4)
    Antoni Serra (4)

    1. Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, s/n. Isla de la Cartuja, 41092, Seville, Spain
    2. Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
    3. Animal Biodiversity Resource Centre (CRBA), Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
    4. Department of Animal Biology and Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Ecology
    Hydrobiology
    Zoology
    Forestry
  • 出版者:Springer Netherlands
  • ISSN:1573-1464
文摘
Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation. Keywords Weed Exotic plant Decomposition Alien effects Biodiversity Community structure Body size

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700