The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function
详细信息    查看全文
  • 作者:Fran Supek
  • 关键词:Codon usage bias ; Translation efficiency ; Gene function ; Microbial ecology
  • 刊名:Journal of Molecular Evolution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:65-73
  • 全文大小:472 KB
  • 参考文献:Agris PF, Vendeix FAP, Graham WD (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13. doi:10.​1016/​j.​jmb.​2006.​11.​046 PubMed CrossRef
    Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927–935PubMed PubMedCentral
    Angov E (2011) Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J 6:650–659. doi:10.​1002/​biot.​201000332 PubMed CrossRef PubMedCentral
    Bentele K, Saffert P, Rauscher R et al (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9:675. doi:10.​1038/​msb.​2013.​32 PubMed CrossRef PubMedCentral
    Brbić M, Warnecke T, Kriško A, Supek F (2015) Global shifts in genome and proteome composition are very tightly coupled. Genome Biol Evol 7:1519–1532. doi:10.​1093/​gbe/​evv088 PubMed CrossRef PubMedCentral
    Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907PubMed PubMedCentral
    Cáceres E, Eva C, Hurst LD (2013) The evolution, impact and properties of exonic splice enhancers. Genome Biol 14:R143. doi:10.​1186/​gb-2013-14-12-r143 PubMed CrossRef PubMedCentral
    Camiolo S, Farina L, Porceddu A (2012) The relation of codon bias to tissue-specific gene expression in Arabidopsis thaliana. Genetics 192:641–649. doi:10.​1534/​genetics.​112.​143677 PubMed CrossRef PubMedCentral
    Cannarozzi G, Schraudolph NN, Faty M et al (2010) A role for codon order in translation dynamics. Cell 141:355–367. doi:10.​1016/​j.​cell.​2010.​02.​036 PubMed CrossRef
    Carbone A (2006) Computational prediction of genomic functional cores specific to different microbes. J Mol Evol 63:733–746. doi:10.​1007/​s00239-005-0250-9 PubMed CrossRef
    Carbone A, Madden R (2005) Insights on the evolution of metabolic networks of unicellular translationally biased organisms from transcriptomic data and sequence analysis. J Mol Evol 61:456–469. doi:10.​1007/​s00239-004-0317-z PubMed CrossRef
    Chan CTY, Pang YLJ, Wenjun D et al (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3:937. doi:10.​1038/​ncomms1938 PubMed CrossRef PubMedCentral
    Chen SL, Lee W, Hottes AK et al (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA 101:3480–3485. doi:10.​1073/​pnas.​0307827100 PubMed CrossRef PubMedCentral
    Chevance FFV, Le Guyon S, Hughes KT (2014) The effects of codon context on in vivo translation speed. PLoS Genet 10:e1004392. doi:10.​1371/​journal.​pgen.​1004392 PubMed CrossRef PubMedCentral
    Cruz J, Liu Y, Liang Y et al (2011) BacMap: an up-to-date electronic atlas of annotated bacterial genomes. Nucleic Acids Res 40:D599–D604. doi:10.​1093/​nar/​gkr1105 PubMed CrossRef PubMedCentral
    Dalquen DA, Dessimoz C (2013) Bidirectional best hits miss many orthologs in duplication-rich clades such as plants and animals. Genome Biol Evol 5:1800–1806. doi:10.​1093/​gbe/​evt132 PubMed CrossRef PubMedCentral
    Deane CM, Dong M, Huard FPE et al (2007) Cotranslational protein folding fact or fiction? Bioinformatics 23:i142–i148. doi:10.​1093/​bioinformatics/​btm175 PubMed CrossRef
    Dedon PC, Begley TJ (2014) A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem Res Toxicol 27:330–337. doi:10.​1021/​tx400438d PubMed CrossRef PubMedCentral
    Dittmar KA, Sørensen MA, Elf J et al (2005) Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep 6:151–157. doi:10.​1038/​sj.​embor.​7400341 PubMed CrossRef PubMedCentral
    Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2:e221. doi:10.​1371/​journal.​pgen.​0020221 PubMed CrossRef PubMedCentral
    Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352. doi:10.​1016/​j.​cell.​2008.​05.​042 PubMed CrossRef PubMedCentral
    Duret L, Mouchiroud D (1999) Expression pattern and surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 96:4482–4487PubMed CrossRef PubMedCentral
    Elf J, Nilsson D, Tenson T, Ehrenberg M (2003) Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300:1718–1722. doi:10.​1126/​science.​1083811 PubMed CrossRef
    Fluman N, Navon S, Bibi E, Pilpel Y (2014) mRNA-programmed translation pauses in the targeting of E. c oli membrane proteins. eLife 3:e03440. doi:10.​7554/​eLife.​03440 CrossRef
    Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101:9033–9038. doi:10.​1073/​pnas.​0402591101 PubMed CrossRef PubMedCentral
    Frenkel-Morgenstern M, Danon T, Christian T et al (2012) Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels. Mol Syst Biol 8:572. doi:10.​1038/​msb.​2012.​3 PubMed CrossRef PubMedCentral
    Gartner JJ, Parker SCJ, Prickett TD et al (2013) Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci USA 110:13481–13486. doi:10.​1073/​pnas.​1304227110 PubMed CrossRef PubMedCentral
    Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:481. doi:10.​1038/​msb.​2011.​14 PubMed CrossRef PubMedCentral
    Gingold H, Tehler D, Christoffersen NR et al (2014) A dual program for translation regulation in cellular proliferation and differentiation. Cell 158:1281–1292. doi:10.​1016/​j.​cell.​2014.​08.​011 PubMed CrossRef
    Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2007) Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 23:2231–2238. doi:10.​1093/​bioinformatics/​btm345 PubMed CrossRef
    Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479. doi:10.​1126/​science.​1241934 PubMed CrossRef
    Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074PubMed CrossRef PubMedCentral
    Grosjean H, Henri G, de Crécy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264. doi:10.​1016/​j.​febslet.​2009.​11.​052 PubMed CrossRef
    Guimaraes JC, Rocha M, Arkin AP (2014) Transcript level and sequence determinants of protein abundance and noise in Escherichia coli. Nucleic Acids Res 42:4791–4799. doi:10.​1093/​nar/​gku126 PubMed CrossRef PubMedCentral
    Henkin TM, Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24:700–707. doi:10.​1002/​bies.​10125 PubMed CrossRef
    Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299. doi:10.​1146/​annurev.​genet.​42.​110807.​091442 PubMed CrossRef
    Hershberg R, Petrov DA (2009) General rules for optimal codon choice. PLoS Genet 5:e1000556. doi:10.​1371/​journal.​pgen.​1000556 PubMed CrossRef PubMedCentral
    Holt KE, Wertheim H, Zadoks RN et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112:E3574–E3581. doi:10.​1073/​pnas.​1501049112 PubMed CrossRef PubMedCentral
    Hunt RC, Simhadri VL, Iandoli M et al (2014) Exposing synonymous mutations. Trends Genet 30:308–321. doi:10.​1016/​j.​tig.​2014.​04.​006 PubMed CrossRef
    Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34PubMed
    Kanaya S, Yamada Y et al (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238:143–155. doi:10.​1016/​s0378-1119(99)00225-5 PubMed CrossRef
    Karlin S, Mrazek J (2000) Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 182:5238–5250. doi:10.​1128/​jb.​182.​18.​5238-5250.​2000 PubMed CrossRef PubMedCentral
    Karlin S, Brocchieri L, Campbell A et al (2005a) Genomic and proteomic comparisons between bacterial and archaeal genomes and related comparisons with the yeast and fly genomes. Proc Natl Acad Sci USA 102:7309–7314. doi:10.​1073/​pnas.​0502314102 PubMed CrossRef PubMedCentral
    Karlin S, Mrázek J, Ma J, Brocchieri L (2005b) Predicted highly expressed genes in archaeal genomes. Proc Natl Acad Sci USA 102:7303–7308. doi:10.​1073/​pnas.​0502313102 PubMed CrossRef PubMedCentral
    Kataoka M, Kosono S, Tsujimoto G (1999) Spatial and temporal regulation of protein expression by bldA within a Streptomyces lividans colony. FEBS Lett 462:425–429PubMed CrossRef
    Kensche PR, van Noort V, Dutilh BE, Huynen MA (2008) Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution. J R Soc Interface 5:151–170. doi:10.​1098/​rsif.​2007.​1047 PubMed CrossRef PubMedCentral
    Knight RD, Freeland SJ, Landweber LF (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. doi:10.​1186/​gb-2001-2-4-research0010
    Krisko A, Radman M (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci USA 107:14373–14377. doi:10.​1073/​pnas.​1009312107 PubMed CrossRef PubMedCentral
    Krisko A, Copic T, Gabaldón T et al (2014) Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol 15:R44. doi:10.​1186/​gb-2014-15-3-r44 PubMed CrossRef PubMedCentral
    Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258. doi:10.​1126/​science.​1170160 PubMed CrossRef PubMedCentral
    Lampson BL, Pershing NLK, Prinz JA et al (2013) Rare codons regulate KRas oncogenesis. Curr Biol 23:70–75. doi:10.​1016/​j.​cub.​2012.​11.​031 PubMed CrossRef PubMedCentral
    Leskiw BK, Mah R, Lawlor EJ, Chater KF (1993) Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 175:1995–2005PubMed PubMedCentral
    Mahlab S, Linial M (2014) Speed controls in translating secretory proteins in Eukaryotes—an evolutionary perspective. PLoS Comput Biol 10:e1003294. doi:10.​1371/​journal.​pcbi.​1003294 PubMed CrossRef PubMedCentral
    Man O, Pilpel Y (2007) Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species. Nat Genet 39:415–421. doi:10.​1038/​ng1967 PubMed CrossRef
    Mizuguchi K, Sele M, Cubellis MV (2007) Environment specific substitution tables for thermophilic proteins. BMC Bioinformatics 8(Suppl 1):S15. doi:10.​1186/​1471-2105-8-S1-S15 PubMed CrossRef PubMedCentral
    Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523PubMed CrossRef
    Najafabadi HS, Salavati R (2008) Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biol 9:R87. doi:10.​1186/​gb-2008-9-5-r87 PubMed CrossRef PubMedCentral
    Najafabadi HS, Goodarzi H, Salavati R (2009) Universal function-specificity of codon usage. Nucleic Acids Res 37:7014–7023. doi:10.​1093/​nar/​gkp792 PubMed CrossRef PubMedCentral
    Nehrt NL, Clark WT, Radivojac P, Hahn MW (2011) Testing the ortholog conjecture with comparative functional genomic data from mammals. PLoS Comput Biol 7:e1002073. doi:10.​1371/​journal.​pcbi.​1002073 PubMed CrossRef PubMedCentral
    Nekrutenko A, Li W-H (2000) Assessment of compositional heterogeneity within and between Eukaryotic genomes. Genome Res 10:1986–1995. doi:10.​1101/​gr.​153400 PubMed CrossRef PubMedCentral
    Novoa EM, Ribas de Pouplana L (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581. doi:10.​1016/​j.​tig.​2012.​07.​006 PubMed CrossRef
    Novoa EM, Pavon-Eternod M, Pan T, Ribas de Pouplana L (2012) A Role for tRNA modifications in genome structure and codon usage. Cell 149:202–213. doi:10.​1016/​j.​cell.​2012.​01.​050 PubMed CrossRef
    Oresic M, Dehn MHH, Korenblum DHH, Shalloway DHH (2003) Tracing specific synonymous codon-secondary structure correlations through evolution. J Mol Evol 56:473–484. doi:10.​1007/​s00239-002-2418-x PubMed CrossRef
    Pechmann S, Frydman J (2012) Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol 20:237–243. doi:10.​1038/​nsmb.​2466 PubMed CrossRef PubMedCentral
    Pershing NLK, Lampson BL, Belsky JA et al (2015) Rare codons capacitate Kras-driven de novo tumorigenesis. J Clin Invest 125:222–233. doi:10.​1172/​JCI77627 PubMed CrossRef PubMedCentral
    Plotkin JB, Kudla G (2010) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. doi:10.​1038/​nrg2899 PubMed CrossRef PubMedCentral
    Powell JR, Dion K (2015) Effects of codon usage on gene expression: empirical studies on Drosophila. J Mol Evol 80:219–226. doi:10.​1007/​s00239-015-9675-y PubMed CrossRef PubMedCentral
    Presnyak V, Alhusaini N, Chen Y-H et al (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124. doi:10.​1016/​j.​cell.​2015.​02.​029 PubMed CrossRef
    Quax TEF, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a Means to fine-tune gene expression. Mol Cell 59:149–161. doi:10.​1016/​j.​molcel.​2015.​05.​035 PubMed CrossRef
    Ran W, Higgs PG (2010) The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Mol Biol Evol 27:2129–2140. doi:10.​1093/​molbev/​msq102 PubMed CrossRef
    Read TD, Massey RC (2014) Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med 6:109. doi:10.​1186/​s13073-014-0109-z PubMed CrossRef PubMedCentral
    Reddy TBK, Thomas AD, Stamatis D et al (2015) The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43:D1099–D1106. doi:10.​1093/​nar/​gku950 PubMed CrossRef PubMedCentral
    Retchless AC, Lawrence JG (2011) Quantification of codon selection for comparative bacterial genomics. BMC Genom 12:374. doi:10.​1186/​1471-2164-12-374 CrossRef
    Rocha EPC (2004a) The replication-related organization of bacterial genomes. Microbiology 150:1609–1627. doi:10.​1099/​mic.​0.​26974-0 PubMed CrossRef
    Rocha EPC (2004b) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286. doi:10.​1101/​gr.​2896904 PubMed CrossRef PubMedCentral
    Rocha EPC, Feil EJ (2010) Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet 6:e1001104. doi:10.​1371/​journal.​pgen.​1001104 PubMed CrossRef PubMedCentral
    Salipante SJ, Roach DJ, Kitzman JO et al (2015) Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25:119–128. doi:10.​1101/​gr.​180190.​114 PubMed CrossRef PubMedCentral
    Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691. doi:10.​1038/​nrg3051 PubMed CrossRef
    Saunders R, Deane CM (2010) Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res 38:6719–6728. doi:10.​1093/​nar/​gkq495 PubMed CrossRef PubMedCentral
    Shabalina SA, Spiridonov NA, Kashina A (2013) Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41:2073–2094. doi:10.​1093/​nar/​gks1205 PubMed CrossRef PubMedCentral
    Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. doi:10.​1093/​nar/​15.​3.​1281 PubMed CrossRef PubMedCentral
    Sharp PM, Tuohy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143PubMed CrossRef PubMedCentral
    Sharp PM, Averof M, Lloyd AT et al (1995) DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci 349:241–247. doi:10.​1098/​rstb.​1995.​0108 PubMed CrossRef
    Sharp PM, Bailes E, Grocock RJ et al (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33:1141–1153. doi:10.​1093/​nar/​gki242 PubMed CrossRef PubMedCentral
    Škunca N, Bošnjak M, Kriško A et al (2013) Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS Comput Biol 9:e1002852. doi:10.​1371/​journal.​pcbi.​1002852 PubMed CrossRef PubMedCentral
    Stoletzki N, Eyre-Walker A (2006) Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24:374–381. doi:10.​1093/​molbev/​msl166 PubMed CrossRef
    Supek F, Smuc T (2010) On relevance of codon usage to expression of synthetic and natural genes in Escherichia coli. Genetics 185:1129–1134. doi:10.​1534/​genetics.​110.​115477 PubMed CrossRef PubMedCentral
    Supek F, Vlahoviček K (2005) Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics 6:182. doi:10.​1186/​1471-2105-6-182 PubMed CrossRef PubMedCentral
    Supek F, Škunca N, Repar J et al (2010) Translational selection is ubiquitous in prokaryotes. PLoS Genet 6:e1001004. doi:10.​1371/​journal.​pgen.​1001004 PubMed CrossRef PubMedCentral
    Supek F, Miñana B, Valcárcel J et al (2014) Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324–1335. doi:10.​1016/​j.​cell.​2014.​01.​051 PubMed CrossRef
    Tsai C-J, Sauna ZE, Kimchi-Sarfaty C et al (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291. doi:10.​1016/​j.​jmb.​2008.​08.​012 PubMed CrossRef PubMedCentral
    Tuller T, Zur H (2015) Multiple roles of the coding sequence 5’ end in gene expression regulation. Nucleic Acids Res 43:13–28. doi:10.​1093/​nar/​gku1313 PubMed CrossRef PubMedCentral
    Tuller T, Carmi A, Vestsigian K et al (2010a) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141:344–354. doi:10.​1016/​j.​cell.​2010.​03.​031 PubMed CrossRef
    Tuller T, Waldman YY, Kupiec M, Ruppin E (2010b) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107:3645–3650. doi:10.​1073/​pnas.​0909910107 PubMed CrossRef PubMedCentral
    UK10K Consortium (2015) The UK10K project identifies rare variants in health and disease. Nature. doi:10.​1038/​nature14962
    Urrutia AO, Hurst LD (2003) The signature of selection mediated by expression on human genes. Genome Res 13:2260–2264. doi:10.​1101/​gr.​641103 PubMed CrossRef PubMedCentral
    Von Mandach C, Merkl R (2010) Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions. BMC Genom 11:617. doi:10.​1186/​1471-2164-11-617 CrossRef
    Wagner A (2000) Inferring lifestyle from gene expression patterns. Mol Biol Evol 17:1985–1987PubMed CrossRef
    Waldman YY, Tuller T, Keinan A, Ruppin E (2011) Selection for translation efficiency on synonymous polymorphisms in recent human evolution. Genome Biol Evol 3:749–761. doi:10.​1093/​gbe/​evr076 PubMed CrossRef PubMedCentral
    Warnecke T, Hurst LD (2007) Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in Drosophila melanogaster. Mol Biol Evol 24:2755–2762. doi:10.​1093/​molbev/​msm210 PubMed CrossRef
    Xia X (1998) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149:37–44PubMed PubMedCentral
    Xu Y, Ma P, Shah P et al (2013) Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495:116–120. doi:10.​1038/​nature11942 PubMed CrossRef PubMedCentral
    Yang J-R, Chen X, Zhang J (2014) Codon-by-codon modulation of translational speed and accuracy via mRNA folding. PLoS Biol 12:e1001910. doi:10.​1371/​journal.​pbio.​1001910 PubMed CrossRef PubMedCentral
    Zaborske JM, DuMont VLB, Wallace EWJ et al (2014) A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol 12:e1002015. doi:10.​1371/​journal.​pbio.​1002015 PubMed CrossRef PubMedCentral
    Zhou T, Weems M, Wilke CO (2009) Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol 26:1571–1580. doi:10.​1093/​molbev/​msp070 PubMed CrossRef PubMedCentral
    Zhou M, Guo J, Cha J et al (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–115. doi:10.​1038/​nature11833 PubMed CrossRef PubMedCentral
  • 作者单位:Fran Supek (1) (2) (3)

    1. Division of electronics, Rudjer Boskovic Institute, 10000, Zagreb, Croatia
    2. EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003, Barcelona, Spain
    3. Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Microbiology
    Plant Sciences
  • 出版者:Springer New York
  • ISSN:1432-1432
文摘
Some mutations in gene coding regions exchange one synonymous codon for another, and thus do not alter the amino acid sequence of the encoded protein. Even though they are often called ‘silent,’ these mutations may exhibit a plethora of effects on the living cell. Therefore, they are often selected during evolution, causing synonymous codon usage biases in genomes. Comparative analyses of bacterial, archaeal, fungal, and human cancer genomes have found many links between a gene’s biological role and the accrual of synonymous mutations during evolution. In particular, highly expressed genes in certain functional categories are enriched with optimal codons, which are decoded by the abundant tRNAs, thus enhancing the speed and accuracy of the translating ribosome. The set of genes exhibiting codon adaptation differs between genomes, and these differences show robust associations to organismal phenotypes. In addition to selection for translation efficiency, other distinct codon bias patterns have been found in: amino acid starvation genes, cyclically expressed genes, tissue-specific genes in animals and plants, oxidative stress response genes, cellular differentiation genes, and oncogenes. In addition, genomes of organisms harboring tRNA modifications exhibit particular codon preferences. The evolutionary trace of codon bias patterns across orthologous genes may be examined to learn about a gene’s relevance to various phenotypes, or, more generally, its function in the cell. Keywords Codon usage bias Translation efficiency Gene function Microbial ecology

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700