Solvent effect on the anodic oxidation of tannic acids: EPR/UV–Vis spectroelectrochemical and DFT theoretical study
详细信息    查看全文
  • 作者:Vladimír Luke? ; Denisa Darvasiová…
  • 关键词:Tannic acids ; Anodic oxidation ; Cyclic voltammetry ; EPR spectroscopy ; UV–Vis spectroscopy ; Spectroelectrochemistry ; DFT calculations
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:19
  • 期:9
  • 页码:2533-2544
  • 全文大小:1,024 KB
  • 参考文献:1.Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Crit Rev Food Sci Nutr 38:421-64CrossRef
    2.Hagerman AE, Riedl KM, Rice RE (1999) Basic Life Sci 66:495-05
    3.Jourdes M, Pouysegu L, Deffieux D, Teissedre P-L, Quideau S (2013) Hydrolyzable tannins: Gallotannins and ellagitannins. In: Ramawat KG, Merillon JM (eds) Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 1975-010CrossRef
    4.Cao Y, Himmeldirk KB, Qian Y, Ren Y, Malki A, Chen X (2014) J Nat Med 68:465-72CrossRef
    5.Zhang J, Li L, Kim SH, Hagerman AE, Lü J (2009) Pharm Res 26:2066-080CrossRef
    6.Qu XJ, Zhou J (2002) Chin J Anal Chem 30:192
    7.Lu S (2004) Russ J Electrochem 40:750-54CrossRef
    8.Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Microchim Acta 159:109-15CrossRef
    9.Xu L, He N, Du J, Deng Y (2008) Electrochem Commun 10:1657-660CrossRef
    10.Hung YT, Chen PC, Chen RLC, Cheng TJ (2008) Sensor Actuat B - Chem 130:135-40CrossRef
    11.Xu L, He N, Du J, Deng Y, Li Z, Wang T (2009) Anal Chim Acta 634:49-3CrossRef
    12.Raj MA, Revin SB, John SA (2013) Bioelectrochemistry 89:1-0CrossRef
    13.Vu DL, Ertek B, ?ervenka L, Dilgin Y (2013) Int J Electrochem Sci 8:9278-286
    14.Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers EMF, Rietjens IMCM (2001) Free Radic Biol Med 31:869CrossRef
    15.?emli?ka L, Fodran P, Luke? V, Vagánek A, Slováková M, Sta?ko A, Dubaj T, Liptaj T, Karabin M, Bíro?ová L, Rapta P (2014) Monatsh Chem 145:1307-318CrossRef
    16.Klein E, Rimar?ík J, Luke? V (2009) Acta Chim Slovaca 2:37-1
    17.Rimar?ík J, Luke? V, Klein E, Il?in M (2010) J Mol Struct (THEOCHEM) 952:25-0CrossRef
    18.Rimar?ík J, Lukes V, Klein E, Rottmannova L (2011) Comput Theor Chem 967:273-83CrossRef
    19.Vagánek A, Rimar?ík J, Luke? V, Klein E (2012) Comput Theor Chem 991:192-00CrossRef
    20.Becke AD (1993) J Chem Phys 98:5648-652CrossRef
    21.Grimme S, Ehrlich S, Goerigk L (2011) J Comp Chem 32:1456-465CrossRef
    22.Furche F, Ahlrichs R (2002) J Chem Phys 117:7433-447CrossRef
    23.Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51-7CrossRef
    24.Cancès E, Mennucci B (1998) J Math Chem 23:309-26CrossRef
    25.Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 462:1-1CrossRef
    26.Martínez L, Andrade R, Birgin EG, Martínez JM (2009) J Comp Chem 30:2157-164CrossRef
    27.Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024-0035CrossRef
    28.Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al. (2009) Gaussian, Inc., Wallingford CT
    29.Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939-47CrossRef
    30.Molekel 4.3, Flukiger P, Luthi HP, Sortmann S, Weber J (2002) Swiss National Supercomputing Centre, Manno, Switzerland
    31.Vedernikova I, Salahub D, Proynov E (2003) J Mol Struct (THEOCHEM) 663:59-1CrossRef
    32.Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284-304CrossRef
    33.Angel LA, Ervin KM (2006) J Phys Chem A 110:10392-0403CrossRef
    34.Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford
    35.Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N (2011) Comp Theor Chem 966:232-43CrossRef
    36.Rimar?ík J, Luke? V, Klein E, Il?in M (2010) J Mol Struc 952:25-0CrossRef
    37.Mejías JA, Lago S (2000) J Chem Phys 113:7306-316CrossRef
  • 作者单位:Vladimír Luke? (1)
    Denisa Darvasiová (1)
    Katarína Furdíková (2)
    Ivana Hubertová (1)
    Peter Rapta (1)

    1. Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
    2. Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Cyclic voltammetry of tannic acid mixture (TAM) in water, dimethylsulfoxide (DMSO), and acetonitrile (ACN) indicates the highest oxidation potential for TAM in ACN, followed by the slightly lowered potential in DMSO and a strongly shifted oxidation potential in water solutions, confirming its pH-dependent redox behavior. In situ EPR and UV–Vis spectroelectrochemical experiments were performed to follow the oxidation reactions of TAM in protic and aprotic media. The formation of an unstable semiquinone anion radical formed upon anodic oxidation of TAM was proved by in situ EPR spectroelectrochemistry both in DMSO and water solutions. The quantum chemical calculations of the model pyrogallol derivatives and tannic acid molecules with four and ten galloyl moieties estimated the role of the spatial hydrogen bonds on the proton affinities and suggested the possible interpretation of experimentally detected redox and spectroelectrochemical behaviors. Keywords Tannic acids Anodic oxidation Cyclic voltammetry EPR spectroscopy UV–Vis spectroscopy Spectroelectrochemistry DFT calculations

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700