Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)
详细信息    查看全文
  • 作者:Libing Zhang ; Zhou Lu ; Luis Velarde ; Li Fu ; Yunqiao Pu ; Shi-You Ding…
  • 关键词:Cellulose Iα ; Cellulose Iβ ; Avicel ; High resolution broadband sum frequency generation vibrational spectroscopy (HR ; BB ; SFG ; VS)
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:22
  • 期:3
  • 页码:1469-1484
  • 全文大小:1,800 KB
  • 参考文献:Asher WE, Willard-Schmoe E (2013) Vibrational sum-frequency spectroscopy for trace chemical detection on surfaces at stand-off distances. Appl Spectrosc 67(3):253-60. doi:10.-366/-2-06792 View Article
    Atalla RHV, David L (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283-85. doi:10.-126/?science.-23.-633.-83 View Article
    Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434-439. doi:10.-021/?bm200518n View Article
    Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802-09. doi:10.-016/?j.?carbpol.-012.-4.-14 View Article
    Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989-000. doi:10.-021/?bi101795q View Article
    Ding S-Y, Liu Y-S (2012) Imaging cellulose using atomic force microscopy. In: Himmel ME (ed) Biomass conversion, vol. 908. Methods in Molecular Biology. Humana Press, pp 23-0. doi:10.-007/-78-1-61779-956-3_-
    Ding S-Y, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41(4):435View Article
    Ding S-Y, Zhao S, Zeng Y (2013) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21(2):863-71. doi:10.-007/?s10570-013-0147-5 View Article
    Eisenthal KB (1997) SFG studies of structural phase transitions at air/water interfaces and shg from the surfaces of microscopic centrosymmetric structures in bulk solution. Abstracts of Papers of the American Chemical Society 213:69-COLL
    Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108(47):E1195–E1203. doi:10.-073/?pnas.-108942108 View Article
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479-500View Article
    Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) The confirmation of existences of cellulose IIII, IIIII, IVI, and IVII by the X-ray method. J Polym Sci Polym Lett Ed 13(1):23-7. doi:10.-002/?pol.-975.-30130104 View Article
    Henri Chanzy BH (1985) Undirectional degradation of valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285-88. doi:10.-016/-014-5793(85)80623-2 View Article
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804-07. doi:10.-126/?science.-137016 View Article
    Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure I(alpha) cellulose in the cell wall of Glaucocystis. J Struct Biol 127(3):248-57View Article
    Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168-172. doi:10.-021/?ma00197a045 View Article
    Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2013) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075-086. doi:10.-007/?s10570-013-0121-2 View Article
    Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21(4):2219-231. doi:10.-007/?s10570-014-0322-3 View Article
    Kim H, Lagutchev A, Dlott DD (2006) Surface and interface spectroscopy of high explosives and binders: HMX and Estane. Propellants Explos Pyrotech 31(2):116-23. doi:10.-002/?prep.-00600017 View Article
    Kim S, Lee C, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127-141. doi:10.-007/?s11814-013-0162-0 View Article
    Kovalenko (2010) Crystalline cellulose structure and hydrogen bonds. Russ Chem Rev 79(3):231-41. doi:10.-070/?RC2010v079n03ABE?H004065 View Article
    Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480-488. do
  • 作者单位:Libing Zhang (1)
    Zhou Lu (2) (5)
    Luis Velarde (2) (6)
    Li Fu (2)
    Yunqiao Pu (3) (7)
    Shi-You Ding (4) (8)
    Arthur J. Ragauskas (3) (7)
    Hong-Fei Wang (2)
    Bin Yang (1)

    1. Bioproduct Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
    2. William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
    5. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
    6. Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
    3. School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
    7. Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, 37996-2200, USA
    4. Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
    8. Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700