Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD
详细信息    查看全文
  • 作者:Yong Bum Park ; Kabindra Kafle ; Christopher M. Lee ; Daniel J. Cosgrove…
  • 关键词:Derbesia ; Algal cell walls ; Cellulose ; Sum frequency generation spectroscopy ; X ; ray diffraction ; Infra ; red spectroscopy
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:22
  • 期:6
  • 页码:3531-3540
  • 全文大小:2,278 KB
  • 参考文献:Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):863鈥?79CrossRef
    Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283鈥?85CrossRef
    Atalla RH, Vanderhart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1鈥?9CrossRef
    Bahaji A, Li J, Ovecka M, Ezquer I, Munoz FJ, Baroja-Fernandez E, Romero JM, Almagro G, Montero M, Hidalgo M, Sesma MT, Pozueta-Romero J (2011) Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. Plant Cell Physiol 52(7):1162鈥?176CrossRef
    Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434鈥?439CrossRef
    Barnette AL, Lee CM, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802鈥?09CrossRef
    Bowman JL, Floyd SK, Sakakibara K (2007) Green genes-comparative genomics of the green branch of life. Cell 129(2):229鈥?34CrossRef
    Cho SH, Du J, Sines I, Poosarla VG, Vepachedu V, Kafle K, Park YB, Kim SH, Kumar M, Nixon BT (2015) In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens. Biochem J 470(2):195鈥?05CrossRef
    Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850鈥?61CrossRef
    Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122鈥?31CrossRef
    De Ruiter GA, Schols HA, Voragen AG, Rombouts FM (1992) Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem 207(1):176鈥?85CrossRef
    Dunn EK, Shoue DA, Huang X, Kline RE, MacKay AL, Carpita NC, Taylor IE, Mandoli DF (2007) Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular 鈥榤annan weed鈥? Acetabularia acetabulum. Plant Cell Physiol 48(1):122鈥?33CrossRef
    Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195鈥揈1203CrossRef
    French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885鈥?96CrossRef
    Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52(2):161鈥?75CrossRef
    Hill JL Jr, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26(12):4834鈥?842CrossRef
    Horikawa Y, Sugiyama J (2009) Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules 10(8):2235鈥?239CrossRef
    Imai T, Sugiyama J (1998) Nanodomains of I伪 and I尾 cellulose in algal microfibrils. Macromolecules 31:6275鈥?279CrossRef
    Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426(6967):611鈥?12CrossRef
    Jia X, Chen Y, Shi C, Ye Y, Wang P, Zeng X, Wu T (2013) Preparation and characterization of cellulose regenerated from phosphoric acid. J Agric Food Chem 61(50):12405鈥?2414CrossRef
    Kafle K, Greeson K, Lee CM, Kim SH (2014a) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84(16):1692鈥?699CrossRef
    Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014b) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21(4):2219鈥?231CrossRef
    Kafle K, Xi X, Lee C, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014c) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075鈥?086CrossRef
    Kim NH, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7(1):274鈥?80CrossRef
    Kim SH, Lee CM, Kafle K (2013a) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127鈥?141CrossRef
    Kim SH, Lee CM, Kafle K, Park YB, Xi X (2013b) Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass. In: Proceedings of SPIE, vol 8845, pp 884501鈥?84508
    Kong L, Lee CM, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118(7):1775鈥?783CrossRef
    Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94(17):9091鈥?095CrossRef
    Kroon-Batenberg L, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercirized cellulose II be parallel? Macromolecules 29(17):5695鈥?699CrossRef
    Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 脜 resolution. Biomacromolecules 2(2):410鈥?16CrossRef
    Lee CM, Mittal A, Barnette AL, Kafle K, Park YB, Shin H, Johhnson DK, Park S, Kim SH (2013) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991鈥?000CrossRef
    Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16(22):10844鈥?0853CrossRef
    Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22(2):972鈥?89CrossRef
    Magnusson M, Mata L, de Nys R, Paul NA (2014) Biomass, lipid and fatty acid production in large-scale cultures of the marine macroalga Derbesia tenuissima (Chlorophyta). Mar Biotechnol (NY) 16(4):456鈥?64CrossRef
    Marubashi Y, Higashi T, Hirakawa S, Tani S, Erata T, Takai M, Kawamata J (2004) Second harmonic generation measurements for biomacromolecules: celluloses. Opt Rev 11(6):385鈥?87CrossRef
    McNamara JT, Morgan JL, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895鈥?21CrossRef
    Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163(4):1558鈥?567CrossRef
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074鈥?082CrossRef
    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300鈥?4306CrossRef
    Page JZ, Kingsbury JM (1968) Culture studies on the marine green alga Halicystis parvula-Derbesia tenuissima. II. Synchrony and periodicity in gamete formation and release. Am J Bot 55(1):1鈥?1CrossRef
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef
    Park YB, Lee CM, Koo BW, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation (SFG) spectroscopy. Plant Physiol 163(2):907鈥?13CrossRef
    Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15(7):2718鈥?724CrossRef
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559鈥?68CrossRef
    Roelofsen PA, Dalitz VC, Wijnman CF (1953) Constitution, submicroscopic structure and degree of crystallinity of the cell wall of Halicystis osterhoutii. Biochim Biophys Acta 11(3):344鈥?52CrossRef
    Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4(12):1105鈥?112CrossRef
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841鈥?45CrossRef
    Sebe G, Ham-Pichavant F, Ibarboure E, Koffi AL, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13(2):570鈥?78CrossRef
    Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, Yingling YG (2013) Tertiary model of a plant cellulose synthase. Proc Natl Acad Sci USA 110(18):7512鈥?517CrossRef
    Sisson WA (1938) The Existence of mercerized cellulose and its orientation in Halicystis as indicated by X-ray diffraction analysis. Science 87(2259):350CrossRef
    Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53鈥?8CrossRef
    Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461鈥?466CrossRef
    Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465鈥?76CrossRef
    Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin鈥檚 target in plant cell walls. Proc Natl Acad Sci USA 110(41):16444鈥?6449CrossRef
    White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136(29):10399鈥?0409CrossRef
    Wutz M, Zetsche K (1976) Biochemistry and regulation of the heteromorphic life cycle of the green alga Derbesia-Halicystis. Planta 129(3):211鈥?16CrossRef
    Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. In: Timell TE, Wimmer R (eds) Springer series in wood science. Springer, Berlin, pp 7鈥?1
  • 作者单位:Yong Bum Park (1)
    Kabindra Kafle (2)
    Christopher M. Lee (2)
    Daniel J. Cosgrove (1)
    Seong H. Kim (2)

    1. 208 Mueller Laboratory, Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
    2. Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
In nature, algae produce cellulose I where all glucan chains are aligned parallel. However, the presence of cellulose II with anti-parallel glucan chains has been reported for certain Derbesia (Chlorophyceae algae) cell walls; if this is true, it would mean a new biological process for synthesizing cellulose that has not yet been recognized. To answer this question, we examined cellulose structure in Derbesia cell walls, intact as well as treated with cellulose isolation procedures, using sum-frequency-generation spectroscopy, infrared (IR) spectroscopy and X-ray diffraction (XRD). Derbesia walls contain large amounts of mannan and small amounts of crystalline cellulose. Evidence for cellulose II in the intact cell walls was not found, whereas cellulose II in the trifluoroacetic acid (TFA) treated cell wall samples were detected by IR and XRD. A control experiment conducted with ball-milled Avicel cellulose samples showed that cellulose II structure could be formed as a result of TFA treatment and drying of amorphous cellulose. These data suggest that the cellulose II structure detected in the TFA-treated Derbesia gametophyte wall samples is most likely due to reorganization of amorphous cellulose during the sample preparation. Our results contradict the previous report of cellulose II in native alga cell walls. Even if the crystalline cellulose II exists in intact Derbesia gametophyte cell walls, its amount would be very small (below the detection limit) and thus biologically insignificant. Keywords Derbesia Algal cell walls Cellulose Sum frequency generation spectroscopy X-ray diffraction Infra-red spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700