Introduction to Quantitative Data Analysis in Vibrational Sum-Frequency Generation Spectroscopy
详细信息    查看全文
  • 刊名:Lecture Notes in Physics
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:917
  • 期:1
  • 页码:491-513
  • 全文大小:752 KB
  • 参考文献:1.H.-F. Wang, W. Gan, R. Lu, Y. Rao, B.-H. Wu, Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (sfg-vs). Int. Rev. Phys. Chem. 24(2), 191–256 (2005)
    2.F. Vidal, A. Tadjeddine, Sum-frequency generation spectroscopy of interfaces. Rep. Prog. Phys. 68(5), 1095 (2005)
    3.M.J. Shultz, C. Schnitzer, D. Simonelli, S. Baldelli, Sum frequency generation spectroscopy of the aqueous interface. ionic and soluble molecular solutions. Int. Rev. Phys. Chem. 19(1), 123–153 (2000)
    4.Y.R. Shen, Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64, 129–150 (2013)ADS CrossRef
    5.S. Roy, P.A. Covert, W.R. FitzGerald, D.K. Hore, Biomolecular structure at solid liquid interfaces as revealed by nonlinear optical spectroscopy. Chem. Rev. 114(17), 8388–8415 (2014)CrossRef
    6.S. Roke, Nonlinear optical spectroscopy of soft matter interfaces. ChemPhysChem 10(9–10), 1380–1388 (2009)
    7.G.L. Richmond, Structure and bonding of molecules at aqueous surfaces. Annu. Rev. Phys. Chem. 52, 357–389 (2001)ADS CrossRef
    8.D. Liu, G. Ma, L.M. Levering, Heather C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)CrossRef
    9.A.G. Lambert, P.B. Davies, D.J. Neivandt, Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 40(2), 103–145 (2005)ADS CrossRef
    10.S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, Molecular-level surface structure from nonlinear vibrational spectroscopy combined with simulations. J. Phys. Chem. B 118(21), 5617–5636 (2014)CrossRef
    11.L. Fu, Z. Wang, E.C.Y. Yan, Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int. J. Mol. Sci. 12(12), 9404–9425 (2011)CrossRef
    12.X. Chen, M.L. Clarke, J. Wang, Z. Chen, Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces. Int. J. Mod. Phys. B 19(04), 691–713 (2005)ADS CrossRef
    13.J. Bredenbeck, A. Ghosh, H.-K. Nienhuys, M. Bonn, Interface-specific ultrafast two-dimensional vibrational spectroscopy. Acc. Chem. Res. 42(9), 1332–1342 (2009)CrossRef
    14.C.D. Bain, Sum-frequency vibrational spectroscopy of the solid/liquid interface. J. Chem. Soc. Faraday Trans. 91, 1281–1296 (1995)CrossRef
    15.S. Ye, F. Wei, H. Li, K. Tian, Y. Luo, Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application. Adv. Protein Chem. Struct. Biol. 93(Biomolecular Spectroscopy), 213–255 (2013)
    16.S. Gopalakrishnan, D. Liu, H.C. Allen, M. Kuo, M.J. Shultz, Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. (Washington, DC, United States) 106(4), 1155–1175 (2006)
    17.Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. (Washington, DC, United States) 106(4), 1140–1154 (2006)
    18.H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Pearson Education, Limited, 2013)
    19.E.C.Y. Yan, L. Fu, Z. Wang, W. Liu, Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. (Washington, DC, United States) 114(17), 8471–8498 (2014)
    20.X. Zhuang, P.B. Miranda, D. Kim, Y.R. Shen, Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B Condens. Matter Mater. Phys. 59(19), 12632–12640 (1999)ADS CrossRef
    21.S.A. Hall, A.D. Hickey, D.K. Hore, Structure of phenylalanine adsorbed on polystyrene from nonlinear vibrational spectroscopy measurements and electronic structure calculations. J. Phys. Chem. C 114(21), 9748–9757 (2010)CrossRef
    22.Y. Liu, T.L. Ogorzalek, P. Yang, M.M. Schroeder, E.N.G. Marsh, Z. Chen. Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid-liquid interface. J. Am. Chem. Soc. 135(34), 12660–12669 (2013). PMID: 23883344
    23.X. Wei, S.-C. Hong, X. Zhuang, T. Goto, Y.R. Shen, Nonlinear optical studies of liquid crystal alignment on a rubbed poly(vinyl alcohol) surface. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdisc. Top. 62(4-A), 5160–5172 (2000)
    24.M.B. Feller, W. Chen, Y.R. Shen, Investigation of surface-induced alignment of liquid-crystal molecules by optical second-harmonic generation. Phys. Rev. A At. Mol. Opt. Phys. 43(12), 6778–6792 (1991)ADS CrossRef
    25.P. Ye, Y.R. Shen, Local-field effect on linear and nonlinear optical properties of adsorbed molecules. Phys. Rev. B Condens. Matter Mater. Phys. 28(8), 4288-4294 (1983)
    26.C. Hirose, N. Akamatsu, K. Domen, Formulas for the analysis of surface sum-frequency generation spectrum by ch stretching modes of methyl and methylene groups. J. Chem. Phys. 96(2), 997–1004 (1992)ADS CrossRef
    27.R. Lu, W. Gan, B. Wu, Z. Zhang, Y. Guo, H. Wang, C-h stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n = 1-8) interfaces. J. Phys. Chem. B 109(29), 14118–14129 (2005)CrossRef
    28.H.-F. Wang, L. Velarde, W. Gan, L. Fu, Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. Annu. Rev. Phys. Chem. 66(1), 189–216 (2015). PMID: 25493712
    29.L. Velarde, H.-F. Wang, Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (sfg-vs). Phys. Chem. Chem. Phys. 15, 19970–19984 (2013)CrossRef
    30.A. G. F. de Beer, J.-S. Samson, W. Hua, Z. Huang, C. Zishuai, X. Chen, H. C. Allen, S. Roke, Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water. J. Chem. Phys. 135(22), 224701/1–224701/9 (2011)
    31.M. Sovago, E. Vartiainen, and M. Bonn, Determining absolute molecular orientation at interfaces: a phase retrieval approach for sum frequency generation spectroscopy. J. Phys. Chem. C 113, 6100–6106 (2009)
    32.P.-K. Yang, J. Y. Huang, Phase-retrieval problems in infrared-visible sum-frequency generation spectroscopy by the maximum-entropy method. J. Opt. Soc. Am. B 14(10), 2443–2448 (1997)
    33.P.-K. Yang, J. Y. Huang, Model-independent maximum-entropy method for the analysis of sum-frequency vibrational spectroscopy. J. Opt. Soc. Am. B 17(7), 1216–1222 (2000)
    34.M. J. Hofmann, P. Koelsch, Retrieval of complex χ2 parts for quantitative analysis of sum-frequency generation intensity spectra. J. Chem. Phys. 143(14), 134112–134118 (2015)
  • 作者单位:Matthias Josef Hofmann (17)
    Patrick Koelsch (18)

    17. Universität Regensburg, Universitätsstrasse, 31, 93053, Regensburg, Germany
    18. National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
  • 丛书名:Soft Matter at Aqueous Interfaces
  • ISBN:978-3-319-24502-7
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical Methods in Physics
    Mathematical and Computational Physics
    Astronomy, Astrophysics and Cosmology
    Atoms, Molecules, Clusters and Plasmas
    Relativity and Cosmology
    Extraterrestrial Physics and Space Sciences
    Condensed Matter
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-6361
文摘
Analyzing molecules at aqueous interfaces in situ, in vitro, or even in vivo without the need for labels and/or disruptive sample preparation is crucial for the understanding and optimization of material’s interactions with its surrounding. In this context, a central theme is the ability to differentiate between molecules in the respective bulk phases and those that are located at the interface. Here we introduce vibrational sum-frequency generation (SFG) spectroscopy, a nonlinear optical technique that is capable to selectively probe molecules at interfaces. SFG spectroscopy can be applied under ex vacuo conditions and allows to record vibrational spectra from molecules at interfaces. Though this technique holds great potential in research themes involving aqueous interfaces, the data analysis of SFG spectra can get quite complex and often requires a comprehensive understanding of the underlying nonlinear optical processes. This chapter introduces experimental and theoretical aspects of SFG spectroscopy with a strong focus on data analysis. It is meant for scientists new to the field of SFG spectroscopy who like to explore its applicability and theoretical background or are starting to apply SFG spectroscopy in their own research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700