Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy
详细信息    查看全文
  • 作者:Zaixing Jiang ; Shuai Zhang ; Chuanxu Yang ; J?rgen Kjems ; Yudong Huang…
  • 关键词:3D DNA box origami ; high ; speed AFM ; stability ; serum ; kinetics
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:8
  • 期:7
  • 页码:2170-2178
  • 全文大小:1,894 KB
  • 参考文献:[1]Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J. DNA origami design of dolphinshaped structures with flexible tails. ACS Nano 2008, 2, 1213-218.View Article
    [2]Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297-02.View Article
    [3]T?rring, T.; Voigt, N. V.; Nangreave, J.; Yan, H.; Gothelf, K. V. DNA origami: A quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 2011, 40, 5636-646.View Article
    [4]T?rring, T.; Helmig, S.; Ogilby, P. R.; Gothelf, K. V. Singlet oxygen in DNA nanotechnology. Acc. Chem. Res. 2014, DOI:10.1021/ar500034y.
    [5]Wei, B.; Dai, M. J.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012, 485, 623-26.View Article
    [6]Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science 2011, 332, 342-46.View Article
    [7]Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 2012, 338, 1177-183.View Article
    [8]Steinhauer, C.; Jungmann, R.; Sobey, T. L.; Simmel, F. C.; Tinnefeld, P. DNA origami as a nanoscopic ruler for superresolution microscopy. Angew. Chem. Int. Ed. 2009, 48, 8870-873.View Article
    [9]Deng, Z. T.; Pal, S.; Samanta, A.; Yan, H.; Liu, Y. DNA functionalization of colloidal II-VI semiconductor nanowires for multiplex nanoheterostructures. Chem. Sci. 2013, 4, 2234-240.View Article
    [10]Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E. Selfassembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 2010, 5, 61-6.View Article
    [11]Subramani, R.; Juul, S.; Rotaru, A.; Andersen, F. F.; Gothelf, K. V.; Mamdouh, W.; Besenbacher, F.; Dong, M. D.; Knudsen, B. R. A novel secondary DNA binding site in human topoisomerase I unravelled by using a 2D DNA origami platform. ACS Nano 2010, 4, 5969-977.View Article
    [12]Ke, Y. G.; Sharma, J.; Liu, M. H.; Jahn, K.; Liu, Y.; Yan, H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009, 9, 2445-447.View Article
    [13]Zadegan, R. M.; Jepsen, M. D. E.; Thomsen, K. E.; Okholm, A. H.; Schaffert, D. H.; Andersen, E. S.; Birkedal, V.; Kjems, J. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 2012, 6, 10050-0053.View Article
    [14]Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 2010, 5, 121-26.View Article
    [15]Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459, 73-6.View Article
    [16]Keum, J.-W.; Bermudez, H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem. Commun. 2009, DOI:10.1039/b917661f.
    [17]Walsh, A. S.; Yin, H. F.; Erben, C. M.; Wood, M. J. A.; Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 2011, 5, 5427-432.View Article
    [18]Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783-789.View Article
    [19]Fu, J. L.; Yan, H. Controlled drug release by a nanorobot. Nat. Biotech. 2012, 30, 407-08.View Article
    [20]Schreiber, R.; Kempter, S.; Holler, S.; Schuller, V.; Schiffels, D.; Simmel, S. S.; Nickels, P. C.; Liedl, T. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 2011, 7, 1795-799.View Article
    [21]Li, Z.; Liu, M. H.; Wang, L.; Nangreave, J.; Yan, H.; Liu, Y. Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 2010, 132, 13545-3552.View Article
    [22]Helmig, S.; Rotaru, A.; Arian, D.; Kovbasyuk, L.; Arnbjerg, J.; Ogilby, P. R.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. ACS Nano 2010, 4, 7475-480.View Article
    [23]Liu, J. F.; Geng, Y. L.; Pound, E.; Gyawali, S.; Ashton, J. R.; Hickey, J.; Woolley, A. T.; Harb, J. N. Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 2011, 5, 2240-247.View Article
    [24]Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248-249.View Article
    [25]Mo, Y. F.; Turner, K. T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116-119.View Article
    [26
  • 作者单位:Zaixing Jiang (1) (2)
    Shuai Zhang (2)
    Chuanxu Yang (2)
    J?rgen Kjems (2)
    Yudong Huang (1)
    Flemming Besenbacher (2)
    Mingdong Dong (2)

    1. Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
    2. Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
3D DNA origami holds tremendous potential for the encapsulation and selective release of therapeutic drugs. Observations of the real-time performance of these structures in physiological environments will contribute to the development of future applications. We investigated the degradation kinetics of 3D DNA box origami in serum by using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allowed to characterize the stages of serum effects on individual 3D DNA boxes origami with nanometer resolution. Our results indicate that the digestion process is a combination of rapid collapse and slow degradation phases. Damage to box origami occurs mainly in the collapse phase. Thus, the structural stability of 3D DNA box origami should be improved, especially in the collapse phase, before these structures are used in clinical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700