Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique
详细信息    查看全文
  • 作者:Hamid Sazegaran ; Ali-Reza Kiani-Rashid…
  • 关键词:steel hollow spheres ; powder metallurgy ; copper content ; shell characteristics
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:4
  • 页码:434-441
  • 全文大小:8,468 KB
  • 参考文献:[1]L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd Ed, Cambridge University Press, Cambridge, 1997.CrossRef
    [2]M.F. Ashby, T. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: a Design Guide, Butterworth-Heinemann, Massachusetts, 2000.
    [3]A. Rabiei, A.T. O’Neill, and B.P. Neville, Processing and development of a new high strength metal foam, [in] MRS Proceedings, 851(2004), No. 10, p. 517.
    [4]U. Waag, L. Schneider, P.A. Löthman, and G. Stephani, Metallic hollow spheres-materials for the future, Met. Powder Rep., 55(2000), No. 1, p. 29.CrossRef
    [5]J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.CrossRef
    [6]L.J. Vendra, J.A. Brown, and A. Rabiei, Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam, J. Mater. Sci., 46(2011), No. 13, p. 4574.CrossRef
    [7]A. Rabiei and M. Garcia-Avila, Effect of various parameters on properties of composite steel foams under variety of loading rates, Mater. Sci. Eng. A, 564(2013), p. 539.CrossRef
    [8]A. Rabiei and L.J. Vendra, A comparison of composite metal foam’s properties and other comperable metal foams, Mater. Lett., 63(2009), No. 5, p. 533.CrossRef
    [9]A. Rabiei, B. Neville, N. Reese, and L. Vendra, New composite metal foams under compressive cyclic loadings, Mater. Sci. Forum, 539-543(2007), p. 1868.CrossRef
    [10]A. Rabiei and A.T. O’Neill, A study on processing of a composite metal foam via casting, Mater. Sci. Eng. A, 404(2005), No. 1-2, p. 159.CrossRef
    [11]A. Rabiei, L. Vendra, N. Reese, N. Young, and B.P. Neville, Processing and characterization of a new composite metal foam, Mater. Trans., 47(2006), No. 9, p. 2148.CrossRef
    [12]H.P. Degischer and B. Kriszt, Handbook of Cellular Metals: Production, Processing, Applications, Wiley-VCH Verlag GMBH, Weinheim, Germany, 2002.CrossRef
    [13]L.J. Vendra, Processing and Characterization of Aluminum–Steel Composite Metal Foams [Dissertation], North Carolina State University, USA, 2008, p. 18.
    [14]K.M. Hurysz, J.L. Clark, A.R. Nagel, C.U. Hardwicke, K.J. Lee, J.K. Cochran, T. H. Sanders Jr, Steel and titanium hollow sphere foams, [in] MRS Proceedings, 521(1998), p. 191.CrossRef
    [15]A. Öchsner, S.M.H. Hosseini, and M. Merkel, Numerical simulation of the mechanical properties of sintered and bonded perforated hollow sphere structures (PHSS), J. Mater. Sci. Technol., 26(2010), No. 8, p. 730.CrossRef
    [16]O. Friedl, C. Motz, H. Peterlik, S. Puchegger, N. Reger, and R. Pippan, Experimental investigation of mechanical properties of metallic hollow sphere structures, Metall. Mater. Trans. B, 39(2008), No. 1, p. 135.CrossRef
    [17]M. Amirjan, H. Khorsand, and M. Khorasani, Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1146.CrossRef
    [18]M. Jaeckel and H. Smigilski, Coating of Polymeric Spheres with Particles, European Patent, DE 3724156, 1988.
    [19]C. Augustin and W. Hungerbach, Production of hollow spheres (HS) and hollow sphere structures (HSS), Mater. Lett., 63(2009), No. 13-14, p. 1109.CrossRef
    [20]M. Behnam, A.S. Golezani, and M.M. Lima, Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy, Powder Technol., 235(2013), p. 1025.CrossRef
    [21]M. Behnam, A.S. Golezani, and M.M. Lima, The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres, Powder Metall. Prog., 11(2011), No. 3-4, p. 185.
    [22]Z.Y. Gao, T.X. Yu, and H. Zhao, Mechanical behavior of metallic hollow sphere materials: experimental study, J. Aerosp. Eng., 21(2008), No. 4, p. 206.CrossRef
    [23]A. Fallet, P. Lhuissier, L. Salvo, and Y. Bréchet, Mechanical behavior of metallic hollow spheres foam, Adv. Eng. Mater., 10(2008), No. 9, p. 858.CrossRef
    [24]S. Roy, A. Wanner, T. Beck, T. Studnitzky, and G. Stephani, Mechanical properties of cellular solids produced from hollow stainless steel spheres, J. Mater. Sci., 46(2011), p. 5519.CrossRef
    [25]R.M. German, Sintering Theory and Practice, John Wiley & Sons, The Pennsylvania State University, Pennsylvania, 1996.
    [26]F. Bretschneider, B. Peter, and J. Brucker, Machine and Process for Producing a Free Flowing Product with a Coat, German Patent, DE 19750042C2, 1999.
  • 作者单位:Hamid Sazegaran (1)
    Ali-Reza Kiani-Rashid (1)
    Jalil Vahdati Khaki (1)

    1. Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres’ shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700