Design, Control, and Experimentation of Internally-Actuated Rovers for the Exploration of Low-Gravity Planetary Bodies
详细信息    查看全文
  • 刊名:Springer Tracts in Advanced Robotics
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:113
  • 期:1
  • 页码:283-298
  • 全文大小:705 KB
  • 参考文献:1.Decadal Survey Vision and Voyages for Planetary Science in the Decade 2013–2022. Technical report, National Research Council (2011). http://​solarsystem.​nasa.​gov/​2013decadal/​
    2.Castillo Rogez, J.C., Pavone, M., Nesnas, I.A.D., Hoffman, J.A.: Expected science return of spatially-extended in-situ exploration at small solar system bodies. In: IEEE Aerospace Conference, pp. 1–15, Big Sky, MT, Mar 2012
    3.NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space. Technical report, National Research Council (2012)
    4.Jones, R.M.: The MUSES-CN rover and asteroid exploration mission. In: 22nd International Symposium on Space Technology and Science, pp. 2403–2410 (2000)
    5.Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007)CrossRef
    6.Hand, E.: Philae probe makes bumpy touchdown on a comet. Science 346(6212), 900–901 (2014)CrossRef
    7.Fiorini, P., Burdick, J.: The development of hopping capabilities for small robots. Auton. Robots 14(2), 239–254 (2003)CrossRef MATH
    8.Sagdeev, R.Z., Zakharov, A.V.: Brief history of the Phobos mission. Nature 341(6243), 581–585 (1989)CrossRef
    9.Dietze, C., Herrmann, S., Kuß, F., Lange, C., Scharringhausen, M., Witte, L., van Zoest, T., Yano, H.: Landing and mobility concept for the small asteroid lander MASCOT on asteroid 1999 JU3. In: 61st International Astronautical Congress (2010)
    10.JAXA Hayabusa mission: Technical report, JAXA (2011). http://​hayabusa.​jaxa.​jp/​e/​index.​html
    11.Allen, R., Pavone, M., McQuin, C., Nesnas, I.A.D., Castillo Rogez, J.C., Nguyen, T.-N., Hoffman, J.A.: Internally-actuated rovers for all-access surface mobility: theory and experimentation. In: Proceedings IEEE Conference on Robotics and Automation, pp. 5481–5488, Karlsruhe, Germany, May 2013
    12.Reid, R.G., Roveda, L., Nesnas, I.A.D., Pavone, M.: Contact dynamics of internally-actuated platforms for the exploration of small solar system bodies. In: i-SAIRAS, pp. 1–9, Montréal, Canada, June 2014
    13.Gajamohan, M., Merz, M., Thommen, I., D’Andrea, R.: The Cubli: a cube that can jump up and balance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3722–3727. IEEE (2012)
    14.Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T., Saito, H.: Microgravity experiment of hopping rover. In: Proceedings of IEEE Conference on Robotics and Automation, vol. 4, pp. 2692–2697 (1999)
    15.McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)CrossRef
    16.JPL’s Cubesats: Technical report, JAXA (2015). http://​cubesat.​jpl.​nasa.​gov/​
    17.Valle, P., Dungan, L., Cunningham, T., Lieberman, A., Poncia, D.: Active Response Gravity Offload System (2011)
    18.Jerry, P., Krupp, B., Morse, C.: Series elastic actuators for high fidelity force control. Ind. Robot: Int. J. 29(3), 234–241 (2002)CrossRef
    19.Duval, E.F.: Dual pulley constant force mechanism, 16 Mar 2010. US Patent 7,677,540
  • 作者单位:B. Hockman (5)
    A. Frick (6)
    I. A. D. Nesnas (6)
    M. Pavone (5)

    5. (Project PI) Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
    6. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
  • 丛书名:Field and Service Robotics
  • ISBN:978-3-319-27702-8
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-742X
文摘
In this paper we discuss the design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity (micro-g to milli-g) planetary bodies, such as asteroids, comets, or small moons. The actuation of the rover relies on spinning three internal flywheels, which allows all subsystems to be packaged in one sealed enclosure and enables the platform to be minimalistic, thereby reducing its cost. By controlling the flywheels’ spin rates, the rover is capable of achieving large surface coverage by attitude-controlled hops, fine mobility by tumbling, and coarse instrument pointing by changing orientation relative to the ground. We discuss the dynamics of such rovers, their control, and key design features (e.g., flywheel design and orientation, geometry of external spikes, and system engineering aspects). The theoretical analysis is validated on a first-of-a-kind 6 degree-of-freedom (DoF) microgravity test bed, which consists of a 3 DoF gimbal attached to an actively controlled gantry crane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700