Combined First and Second Order Variational Approaches for Image Processing
详细信息    查看全文
  • 作者:Gabriele Steidl
  • 关键词:Mathematical image analysis ; Variational models ; Primal ; dual algorithms ; Higher order models ; Optical flow ; Strain tensor ; Cyclic proximal point algorithm ; Cyclic data ; 49J40 ; 49M29 ; 49M37 ; 49N45 ; 52A41 ; 65K10
  • 刊名:Jahresbericht der deutschen Mathematiker-Vereinigung
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:117
  • 期:2
  • 页码:133-160
  • 全文大小:4,344 KB
  • 参考文献:1. Alvarez, L., Castao, C., Garca, M., Krissian, K., Mazorra, L., Salgado, A., Snchez, J.: Variational second order flow estimation for PIV sequences. Exp. Fluids 44(2), 291鈥?04 (2008) View Article
    2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000) MATH
    3. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2(3), 283鈥?10 (1989) View Article
    4. Babacan, S., Molina, R., Katsaggelos, A.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326鈥?39 (2008) View Article MathSciNet
    5. Ba膷谩k, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689鈥?01 (2013) View Article MATH
    6. Ba膷谩k, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. (2014). arXiv:鈥?210.鈥?145v3
    7. Balle, F., Eifler, D., Fitschen, J.H., Schuff, S., Steidl, G.: Computation and visualization of local deformation for multiphase metallic materials by infimal convolution of TV-type functionals. ArXiv Preprint (2014)
    8. Bardsley, J.M.: Wavefront reconstruction methods for adaptive optics systems on ground-based telescopes. SIAM J. Matrix Anal. Appl. 30, 67鈥?3 (2008) View Article MATH MathSciNet
    9. Becker, F., Petra, S., Schn枚rr, C.: Optical flow. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, 2nd edn. Springer, Berlin (2014)
    10. Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising. SIAM J. Imaging Sci. 7(4), 2916鈥?953 (2014) View Article MATH MathSciNet
    11. Bergmann, R., Weinmann, A.: Inpainting of cyclic data using first and second order differences. In: EMCVPR2015. Lecture Notes in Computer Science, pp.聽155鈥?68 (2015)
    12. Bergmann, R., Weinmann, A.: A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data (2015). arXiv:鈥?501.鈥?2684
    13. Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set-Valued Var. Anal. 18(3-4), 277鈥?06 (2010) View Article MATH MathSciNet
    14. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol (1998) View Article MATH
    15. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Technical Report LIDS-P-2848, Laboratory for Information and Decision Systems, MIT Press, Cambridge (2010)
    16. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program., Ser. B 129(2), 163鈥?95 (2011) View Article MATH MathSciNet
    17. Bioucas-Dias, J., Katkovnik, V., Astola, J., Egiazarian, K.: Absolute phase estimation: adaptive local denoising and global unwrapping. Appl. Opt. 47(29), 5358鈥?369 (2008) View Article
    18. Bioucas-Dias, J., Valad茫o, G.: Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16(3), 698鈥?09 (2007) View Article MathSciNet
    19. Blaber, J., Adair, B., Antoniou, A.: Ncorr: Open-source 2D digital image correlation Matlab software (2014). www.鈥媙corr.鈥媍om
    20. Bo牛, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization. J. Math. Imaging Vis. 49(3), 551鈥?68 (2014) View Article MATH
    21. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 1鈥?2 (2010) View Article MathSciNet
    22. Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011鈥?th International Conference on Sampling Theory and Applications (2011)
    23. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) Computer Vision鈥擡CCV 2004. Lecture Notes in Computer Science, vol.聽3024, pp.聽25鈥?6. Springer, Berlin, Heidelberg (2004) View Article
    24. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500鈥?13 (2011) View Article
    25. Burger, M., Sawatzky, A., Steidl, G.: First order algorithms in variational image processing (2014). arXiv:鈥?412.鈥?237
    26. Cai, J.-F., Chan, R., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46鈥?3 (2010) View Article MathSciNet
    27. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, vol.聽9, pp.聽263鈥?40 (2010)
    28. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167鈥?88 (1997) View Article MATH MathSciNet
    29. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120鈥?45 (2011) View Article MATH MathSciNet
    30. Chan, R.H., Yuan, X., Zhang, W.: A phase model for point spread function estimation in ground-based astronomy. Sci. China Math. 56, 2701鈥?710 (2013) View Article MATH
    31. Chan, T.F., Esedoglu, S., Park, F.E.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image Represent. 18(6), 464鈥?86 (2007) View Article
    32. Chan, T.F., Kang, S.H., Shen, J.: Euler鈥檚 elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564鈥?92 (2002) MATH MathSciNet
    33. Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503鈥?16 (2000) View Article MATH MathSciNet
    34. Chu, Q., Jefferies, S., Nagy, J.G.: Iterative wavefront reconstruction for astronomical imaging. SIAM J. Sci. Comput. 35(5), 84鈥?03 (2013) View Article MathSciNet
    35. Combettes, P., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixture of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307鈥?30 (2012) View Article MATH MathSciNet
    36. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.聽185鈥?12. Springer, Berlin (2011) View Article
    37. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168鈥?200 (2005) View Article MATH MathSciNet
    38. Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249鈥?65 (2005) View Article
    39. Deledalle, C.-A., Denis, L., Tupin, F.: NL-InSAR: nonlocal interferogram estimation. IEEE Trans. Geosci. Remote Sens. 49(4), 1441鈥?452 (2011) View Article
    40. Demengel, F.: Fonctions 脿 hessien born茅. Ann. Inst. Fourier 34, 155鈥?90 (1985) View Article MathSciNet
    41. Didas, S., Steidl, G., Setzer, S.: Combined 鈩?/em> 2 data and gradient fitting in conjunction with 鈩?/em> 1 regularization. Adv. Comput. Math. 30(1), 79鈥?9 (2009) View Article MATH MathSciNet
    42. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35, 208鈥?26 (2009) View Article MathSciNet
    43. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421鈥?39 (1956) View Article MATH MathSciNet
    44. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996) View Article MATH
    45. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015鈥?046 (2010) View Article MATH MathSciNet
    46. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257鈥?70 (2002) View Article MATH MathSciNet
    47. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1995)
    48. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkh盲user, Basel (2013) View Article MATH
    49. Giaquinta, M., Modica, G., Sou膷ek, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. 1(1), 87鈥?21 (1993) View Article MATH MathSciNet
    50. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5(4), 483鈥?48 (2006) MATH MathSciNet
    51. Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appl. Math. Q. 3(2), 513鈥?38 (2007) View Article MATH MathSciNet
    52. Goldluecke, B., Strekalovskiy, E., Cremers, D.: A natural total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5(2), 537鈥?63 (2012) View Article MATH MathSciNet
    53. Goldstein, D., Osher, S.: The Split Bregman method for l 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323鈥?43 (2009) View Article MATH MathSciNet
    54. Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods for saddle-point problems. ArXiv Preprint (2013)
    55. Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996)
    56. Gousseau, Y., Morel, J.-M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634鈥?48 (2001) View Article MATH MathSciNet
    57. Greb, F., Krivobokova, T., Munck, A., von Cramon-Taubadel, S.: Regularized Bayesian estimation in generalized threshold regression methods. Bayesian Anal. 9(1), 171鈥?96 (2014) View Article MathSciNet
    58. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253鈥?15 (1993) MATH MathSciNet
    59. Hewer, A., Weickert, J., Seibert, H., Scheffer, T., Diebels, S.: Lagrangian strain tensor computation with higher order variational models. In: Proceedings of the British Machine Vision Conference. BMVA Press, Leeds (2013)
    60. Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1), 109鈥?33 (2006) View Article MATH MathSciNet
    61. Hinterberger, W., Scherzer, O., Schn枚rr, C., Weickert, J.: Analysis of optical flow models in the framework of calculus of variations. SIAM J. Appl. Math. 23(1/2), 69鈥?9 (2002) MATH
    62. Hinterm眉ller, W., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311鈥?333 (2004) View Article MATH MathSciNet
    63. Holler, M., Kunisch, K.: On infimal convolution of tv type functionals and applications to video and image reconstruction. SIAM J. Imaging Sci. 7(4), 2258鈥?300 (2014) View Article MATH MathSciNet
    64. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1-3), 185鈥?03 (1981) View Article
    65. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Math. Comput. Appl. 33(4), 81鈥?04 (1997) View Article MATH MathSciNet
    66. Ivanov, K.V., Vasin, V.V., Tanana, V.P.: Theory of Linear Ill-Posed Problems and Its Applications. Brill, Utrecht, Boston, Koeln, Tokyo (2002) View Article MATH
    67. Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics. World Scientific, Singapore (2001) MATH
    68. Lawson, C.L., Hansen, R.J.: Solving Least Squares Problems. Prentice Hall, Englewood Cliffs (1974) MATH
    69. Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983鈥?95 (2012) View Article MathSciNet
    70. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV 2013, pp.聽2944鈥?951 (2013)
    71. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964鈥?79 (1979) View Article MATH MathSciNet
    72. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579鈥?590 (2003) View Article MATH
    73. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999) MATH
    74. Maso, G.D., Fonseca, I., Leoni, G., Morini, M.: A higher order model for image restoration: the one-dimensional case. SIAM J. Math. Anal. 40(6), 2351鈥?391 (2009) View Article MATH MathSciNet
    75. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984) View Article
    76. Papafitsoros, K., Sch枚nlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308鈥?38 (2014) View Article
    77. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conf. Computer Vision and Pattern Recognition, pp.聽810鈥?17 (2009)
    78. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877鈥?98 (1976) View Article MATH MathSciNet
    79. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259鈥?68 (1992) View Article MATH
    80. Rust, B.W., O鈥橪eary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 24(3), 034005 (2008) View Article MathSciNet
    81. Sapiro, G.: Vector-valued active contours In: IEEE CVPR 1996, pp.聽680鈥?85
    82. Sawatzky, A., Brune, C., K枚sters, T., W眉bbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp.聽71鈥?42 (2013) View Article
    83. Scherer, S., Werth, P., Pinz, A.: The discriminatory power of ordinal measures鈥攖owards a new coefficient. In: Computer Vision and Pattern Recognition. IEEE Computer Society Conference, vol.聽1, pp.聽76鈥?1 (1999)
    84. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60(1), 1鈥?7 (1998) View Article MATH MathSciNet
    85. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009) MATH
    86. Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265鈥?80 (2011) View Article MATH MathSciNet
    87. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII: San Antonio 2007, pp.聽360鈥?85 (2008)
    88. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Commun. Math. Sci. 9(3), 797鈥?72 (2011) View Article MATH MathSciNet
    89. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas鈥揜achford splitting methods. J.聽Math. Imaging Vis. 36(2), 168鈥?84 (2010) View Article MATH MathSciNet
    90. Strauss, D.J., Teuber, T., Steidl, G., Corona-Strauss, F.I.: Exploiting the self-similarity in ERP images by nonlocal means for single-trial denoising. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 576鈥?83 (2013) View Article
    91. Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: convex relaxation and efficient minimization. In: IEEE CVPR 2011, pp.聽1905鈥?911. IEEE Press, New York (2011) View Article
    92. Strekalovskiy, E., Cremers, D.: Total cyclic variation and generalizations. J. Math. Imaging Vis. 47(3), 258鈥?77 (2013) View Article MATH MathSciNet
    93. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler鈥檚 elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313鈥?44 (2011) View Article MATH MathSciNet
    94. Tatschl, A., Kolednik, O.: A new tool for the experimental characterization of micro-plasticity. Mater. Sci. Eng. A 339(12), 265鈥?80 (2003) View Article
    95. Teuber, T., Steidl, G., Chan, R.H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Inverse Probl. 29, 1鈥?8 (2013) View Article MathSciNet
    96. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) Pattern Recognition. Lecture Notes in Computer Science, vol.聽5096, pp.聽396鈥?05. Springer, Berlin, Heidelberg (2008) View Article
    97. V农, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667鈥?81 (2013) View Article MATH MathSciNet
    98. Wahba, G.: Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 14(4), 651鈥?67 (1977) View Article MATH MathSciNet
    99. Weickert, J., Schn枚rr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245鈥?55 (2001) View Article MATH
    100. Weickert, J., Welk, M., Wickert, M.: L2-stable nonstandard finite differences for anisotropic diffusion. In: Scale-Space and Variational Methods in Computer Vision 2013. Lecture Notes in Computer Science, vol.聽7893, pp.聽380鈥?91 (2013) View Article
    101. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226鈥?257 (2014) View Article MATH MathSciNet
    102. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal. 24, 195鈥?24 (2008) View Article MATH MathSciNet
    103. Yuan, J., Schn枚rr, C., M茅min, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vis. 28, 67鈥?0 (2007) View Article
    104. Yuan, J., Schn枚rr, C., Steidl, G.: Simultaneous higher order optical flow estimation and decomposition. SIAM J. Sci. Comput. 29(6), 2283鈥?304 (2007) View Article MATH MathSciNet
    105. Yuan, J., Schn枚rr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J.聽Math. Imaging Vis. 33(2), 169鈥?77 (2009) View Article MATH
  • 作者单位:Gabriele Steidl (1)

    1. Dept. of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 31, 67653, Kaiserslautern, Germany
  • 刊物类别:Mathematics and Statistics
  • 出版者:Vieweg+Teubner Verlag
  • ISSN:1869-7135
文摘
Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like image restoration, registration, segmentation, super-resolution, and estimation of flow fields. We review recent progress in mathematical image processing by combining first and second order derivatives in the regularization term of variational models. We demonstrate the power of the proposed methods by two rather different applications. The approaches make use of two different splitting methods of the functional to obtain iterative numerical schemes which require in each step only the computation of simple proximal mappings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700