Flux Splitting for Stiff Equations: A Notion on Stability
详细信息    查看全文
  • 作者:Jochen Schütz ; Sebastian Noelle
  • 关键词:IMEX finite volume ; Asymptotic preserving ; Flux splitting ; Modified equation ; Stability analysis ; 35L65 ; 76M45 ; 65M08
  • 刊名:Journal of Scientific Computing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:64
  • 期:2
  • 页码:522-540
  • 全文大小:639 KB
  • 参考文献:1.Arun, K., Noelle, S.: An asymptotic preserving scheme for low Froude number shallow flows. IGPM Preprint 352 (2012)
    2.Ascher, U., Ruuth, S., Spiteri, R.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151-67 (1997)MATH MathSciNet View Article
    3.Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45, 1600-621 (2007)MATH MathSciNet View Article
    4.Choi, Y.H., Merkle, C.: The application of preconditioning in viscous flows. J. Comput. Phys. 105(2), 207-23 (1993)MATH MathSciNet View Article
    5.Chorin, A.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928-31 (1967)MATH MathSciNet View Article
    6.Colella, P., Pao, K.: A projection method for low speed flows. J. Comput. Phys. 149(2), 245-69 (1999)MATH MathSciNet View Article
    7.Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231, 5685-704 (2012)MATH MathSciNet View Article
    8.Courant, R., Friedrichs, K., Lewy, H.: über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32-4 (1928)MATH MathSciNet View Article
    9.Crouzeix, M.: Une méthode multipas implicite–explicite pour l’approximation des équations d’évolution paraboliques. Numerische Mathematik 35(3), 257-76 (1980)MATH MathSciNet View Article
    10.Degond, P., Lozinski, A., Narski, J., Negulescu, C.: An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comput. Phys. 231, 2724-740 (2012)MATH MathSciNet View Article
    11.Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10, 1-1 (2011)MathSciNet
    12.Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978-016 (2010)MATH MathSciNet View Article
    13.Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)MATH
    14.Guillard, H., Murrone, A.: On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33(4), 655-75 (2004)MATH View Article
    15.Guillard, H., Viozat, C.: On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28(1), 63-6 (1999)MATH MathSciNet View Article
    16.Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12, 955-80 (2012)MathSciNet
    17.Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics (1991)
    18.Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441-54 (1999)MATH MathSciNet View Article
    19.Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Rivista di Matematica della Universit di Parma 3, 177-16 (2012)MATH
    20.Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405-439 (1998)MATH MathSciNet View Article
    21.Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481-24 (1981)MATH MathSciNet View Article
    22.Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121, 213-37 (1995)MATH MathSciNet View Article
    23.Klein, R., Botta, N., Schneider, T., Munz, C., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Eng. Math. 39(1), 261-43 (2001)MATH MathSciNet View Article
    24.Kr?ner, D.: Numerical Schemes for Conservation Laws. Wiley Teubner, New York (1997)MATH
    25.Lax, P.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients. Commun. Pure Appl. Math. 14, 497-20 (1961)MATH MathSciNet View Article
    26.Murrone, A., Guillard, H.: Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model. Comput. Fluids 37(10), 1209-224 (2008)MATH MathSciNet View Article
    27.Noelle, S., Bispen, G., Arun, K., Lukacova-Medvidova, M., Munz, C.D.: An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. (2014). doi:10.-137/-20895627
    28.Richtmyer, R., Morton, K.: Difference Methods for Initial-Value Problems. Krieger Publishing Company, Malabar (1994)MATH
    29.Russo, G., Boscarino, S.: IMEX Runge-Kutta schemes fo
  • 作者单位:Jochen Schütz (1)
    Sebastian Noelle (1)

    1. Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52062?, Aachen, Germany
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
For low Mach number flows, there is a strong recent interest in the development and analysis of IMEX (implicit/explicit) schemes, which rely on a splitting of the convective flux into stiff and nonstiff parts. A key ingredient of the analysis is the so-called Asymptotic Preserving property, which guarantees uniform consistency and stability as the Mach number goes to zero. While many authors have focused on asymptotic consistency, we study asymptotic stability in this paper: does an IMEX scheme allow for a CFL number which is independent of the Mach number? We derive a stability criterion for a general linear hyperbolic system. In the decisive eigenvalue analysis, the advective term, the upwind diffusion and a quadratic term stemming from the truncation in time all interact in a subtle way. As an application, we show that a new class of splittings based on characteristic decomposition, for which the commutator vanishes, avoids the deterioration of the time step which has sometimes been observed in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700