Identification of beer spoilage microorganisms using the MALDI Biotyper platform
详细信息    查看全文
  • 作者:Michelle Elizabeth Turvey ; Florian Weiland…
  • 关键词:Beer spoilage microorganisms ; Biotyper ; Quality control ; Mass spectrometry ; MALDI
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:100
  • 期:6
  • 页码:2761-2773
  • 全文大小:1,654 KB
  • 参考文献:Andres-Barrao C, Benagli C, Chappuis M, Ortega Perez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81. doi:10.​1016/​j.​syapm.​2012.​09.​002 CrossRef PubMed
    Arnold RJ, Reilly JP (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 269(1):105–112. doi:10.​1006/​abio.​1998.​3077 CrossRef PubMed
    Back W (1994) Secondary contaminations in the filling area. Brauwelt International 4:326–333
    Back W (2006) Colour atlas and handbook of beverage biology. Carl, Nürnberg, Germany
    Barney M, Volgyi A, Navarro A, Ryder D (2001) Riboprinting and 16S rRNA gene sequencing for identification of brewery pediococcus isolates. Appl Environ Microbiol 67(2):553–560. doi:10.​1128/​aem.​67.​2.​553-560.​2001 PubMedCentral CrossRef PubMed
    Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44(1):104–109. doi:10.​1016/​j.​clinbiochem.​2010.​06.​017 CrossRef PubMed
    Coenye T, Falsen E, Hoste B, Ohlén M, Goris J, Govan JR, Gillis M, Vandamme P (2000) Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50(2):887–899. doi:10.​1099/​00207713-50-2-887 CrossRef PubMed
    Dieckmann R, Strauch E, Alter T (2010) Rapid identification and characterization of vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 109(1):199–211. doi:10.​1111/​j.​1365-2672.​2009.​04647.​x PubMed
    Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18(10):1610–1623. doi:10.​1101/​gr.​076075.​108 PubMedCentral CrossRef PubMed
    Duskova M, Sedo O, Ksicova K, Zdrahal Z, Karpiskova R (2012) Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int J Food Microbiol 159(2):107–114. doi:10.​1016/​j.​ijfoodmicro.​2012.​07.​029 CrossRef PubMed
    Fagerquist CK, Bates AH, Heath S, King BC, Garbus BR, Harden LA, Miller WG (2006) Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. J Proteome Res 5(10):2527–2538. doi:10.​1021/​pr050485w CrossRef PubMed
    Fernadez-Espinar MT, Esteve-Zarzoso B, Querol A, Barrio E (2000) RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek 78(1):87–97CrossRef PubMed
    Fracalanzza SAP, Scheidegger EMD, PFd S, PC L, LM T (2007) Antimicrobial resistance profiles of enterococci isolated from poultry meat and pasteurized milk in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 102(7):853–859CrossRef PubMed
    Fujii T, Nakashima K, Hayashi N (2005) Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. J Appl Microbiol 98(5):1209–1220. doi:10.​1111/​j.​1365-2672.​2005.​02558.​x CrossRef PubMed
    Hayashi N, Ito M, Horiike S, Taguchi H (2001) Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Appl Microbiol Biotechnol 55(5):596–603CrossRef PubMed
    Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(10):1227–1232. doi:10.​1002/​(sici)1097-0231(19960731)10:​10<1227:​:​aid-rcm659>3.​0.​co;2-6 CrossRef PubMed
    Huhtamella S, Leinonen M, Nieminen T, Fahnert B, Myllykoski L, Breitenstein A, Neubauer P (2007) RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. J Microbiol Methods 68(3):543–553. doi:10.​1016/​j.​mimet.​2006.​10.​009 CrossRef PubMed
    Hutzler M, Müller-Auffermann K, Koob J, Riedl R, Jacob F (2013) Beer spoiling microorganisms—a current overview. Brauwelt Int 31:23–25
    Iijima K, Asano S, Suzuki K, Ogata T, Kitagawa Y (2008) Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci. Biosci Biotechnol Biochem 72(10):2764–2766. doi:10.​1271/​bbb.​80297 CrossRef PubMed
    Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125(2):162–169. doi:10.​1016/​j.​ijfoodmicro.​2008.​03.​042 CrossRef PubMed
    Kern CC, Vogel RF, Behr J (2014) Differentiation of Lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol 40:18–24. doi:10.​1016/​j.​fm.​2013.​11.​015 CrossRef PubMed
    Kloos WE, Schleifer KH (1975) Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Evol Microbiol 25(1):62–79. doi:10.​1099/​00207713-25-1-62
    Koivula TT, Juvonen R, Haikara A, Suihko ML (2006) Characterization of the brewery spoilage bacterium obesumbacterium Proteus by automated ribotyping and development of PCR methods for its biotype. J Appl Microbiol 100(2):398–406. doi:10.​1111/​j.​1365-2672.​2005.​02794.​x CrossRef PubMed
    Lues J, Ikalafeng B, Maharasoa M, Shale K, Malebo N, Pool E (2011) Staphylococci and other selected microbiota associated with indigenous traditional beer. Afr J Microbiol Res 5(13):1691–1696
    Manzano M, Cocolin L, Longo B, Comi G (2004) PCR-DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 85(1):23–27. doi:10.​1023/​b:​anto.​0000020270.​44019.​39 CrossRef PubMed
    March C, Manclus JJ, Abad A, Navarro A, Montoya A (2005) Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera. J Immunol Methods 303(1–2):92–104. doi:10.​1016/​j.​jim.​2005.​06.​002 CrossRef PubMed
    Martin B, Corominas L, Garriga M, Aymerich T (2009) Identification and tracing of Enterococcus spp. by RAPD-PCR in traditional fermented sausages and meat environment. J Appl Microbiol 106(1):66–77. doi:10.​1111/​j.​1365-2672.​2008.​03976.​x CrossRef PubMed
    Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46(6):1946–1954. doi:10.​1128/​jcm.​00157-08 PubMedCentral CrossRef PubMed
    Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, Fahr AM, He Y, Ilina EN, Kostrzewa M, Maier T, Mancinelli L, Moussaoui W, Prevost G, Putignani L, Seachord CL, Tang YW, Harmsen D (2009) High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 47(11):3732–3734. doi:10.​1128/​jcm.​00921-09 PubMedCentral CrossRef PubMed
    Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128(2):288–296. doi:10.​1016/​j.​ijfoodmicro.​2008.​08.​019 CrossRef PubMed
    Pham T, Wimalasena T, Box WG, Koivuranta K, Storgårds E, Smart KA, Gibson BR (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J Inst Brew 117(4):556–568. doi:10.​1002/​j.​2050-0416.​2011.​tb00504.​x CrossRef
    Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73(4):746–750CrossRef PubMed
    Saez JS, Lopes CA, Kirs VE, Sangorrin M (2011) Production of volatile phenols by Pichia manshurica and Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia. Food Microbiol 28(3):503–509. doi:10.​1016/​j.​fm.​2010.​10.​019 CrossRef PubMed
    Saffert RT, Cunningham SA, Ihde SM, Monson Jobe KE, Mandrekar J, Patel R (2011) Comparison of Bruker biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometer to BD phoenix automated microbiology system for identification of Gram-negative bacilli. J Clin Microbiol 49(3):887–892PubMedCentral CrossRef PubMed
    Sato H, Teramoto K, Ishii Y, Watanabe K, Benno Y (2011) Ribosomal protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for phylogenety-based subspecies resolution of Bifidobacterium longum. Syst Appl Microbiol 34(1):76–80. doi:10.​1016/​j.​syapm.​2010.​07.​003 CrossRef PubMed
    Schmitt BH, Cunningham SA, Dailey AL, Gustafson DR, Patel R (2013) Identification of anaerobic bacteria by Bruker biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry with on-plate formic acid preparation. J Clin Microbiol 51(3):782–786PubMedCentral CrossRef PubMed
    Schurr BC, Behr J, Vogel RF (2015) Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol 46:501–506. doi:10.​1016/​j.​fm.​2014.​09.​018 CrossRef PubMed
    Silvetti T, Brasca M, Lodi R, Vanoni L, Chiolerio F, de Groot M, Bravi A (2010) Effects of lysozyme on the microbiological stability and organoleptic properties of unpasteurized beer. J Inst Brew 116(1):33–40. doi:10.​1002/​j.​2050-0416.​2010.​tb00395.​x CrossRef
    Teramoto K, Sato H, Sun L, Torimura M, Tao H, Yoshikawa H, Hotta Y, Hosoda A, Tamura H (2007) Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal Chem 79(22):8712–8719. doi:10.​1021/​ac701905r CrossRef PubMed
    Timke M, Wang-Lieu NQ, Altendorf K, Lipski A (2005) Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71(10):6446–6452PubMedCentral CrossRef PubMed
    Timke M, Wang-Lieu NQ, Altendorf K, Lipski A (2008) Identity, beer spoiling and biofilm forming potential of yeasts from beer bottling plant associated biofilms. Antonie Van Leeuwenhoek 93(1–2):151–161. doi:10.​1007/​s10482-007-9189-8 CrossRef PubMed
    Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho Mda G, Facklam RR, Lovgren M (2002) Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 40(4):1140–1145PubMedCentral CrossRef PubMed
    Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71(1):58–64. doi:10.​1128/​aem.​71.​1.​58-64.​2005 PubMedCentral CrossRef PubMed
    van der Aa Kuhle A, Jespersen L (1998) Detection and identification of wild yeasts in lager breweries. Int J Food Microbiol 43(3):205–213CrossRef
    Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G (2008) Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J Appl Microbiol 105(4):951–962. doi:10.​1111/​j.​1365-2672.​2008.​03799.​x CrossRef PubMed
    Whiting MS, Ingledew WM, Lee SY, Ziola B (1999) Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci. Can J Microbiol 45(8):670–677CrossRef PubMed
    Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 185:41–50 doi:http://​dx.​doi.​org/​10.​1016/​j.​ijfoodmicro.​2014.​05.​003
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.​1038/​nmeth.​1322 CrossRef PubMed
    Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N, Wahl K (2005a) Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser desorption/ionization whole cell protein fingerprints. J Microbiol Methods 62(3):259–271. doi:10.​1016/​j.​mimet.​2005.​04.​033 CrossRef PubMed
    Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E (2005b) Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison. J Am Soc Mass Spectrom 16(4):456–462. doi:10.​1016/​j.​jasms.​2004.​12.​004 CrossRef PubMed
    Yasui T, Okamoto T, Taguchi H (1997) A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction. Can J Microbiol 43(2):157–163CrossRef PubMed
    Zago M, Bonvini B, Carminati D, Giraffa G (2009) Detection and quantification of Enterococcus gilvus in cheese by real-time PCR. Syst Appl Microbiol 32(7):514–521 doi:http://​dx.​doi.​org/​10.​1016/​j.​syapm.​2009.​07.​001
  • 作者单位:Michelle Elizabeth Turvey (1) (2)
    Florian Weiland (1) (2)
    Jon Meneses (3)
    Nick Sterenberg (3)
    Peter Hoffmann (1) (2)

    1. Adelaide Proteomics Centre, The University of Adelaide, Adelaide, Australia
    2. Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
    3. Coopers Brewery Ltd, Adelaide, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700