Role of the GAD system in hop tolerance of Lactobacillus brevis
详细信息    查看全文
  • 作者:Benjamin C. Schurr (1)
    Jürgen Behr (1)
    Rudi F. Vogel (1)
  • 关键词:Lactobacillus brevis ; GAD system ; Hop tolerance ; Beer spoilage
  • 刊名:European Food Research and Technology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:237
  • 期:2
  • 页码:199-207
  • 全文大小:1037KB
  • 参考文献:1. Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional / gal promoters in intact / Escherichia coli cells. J Biol Chem 256:11905-1910
    2. Albert A (1985) Selective toxicity. In: The physico-chemical basis of therapy, Chap 10. Chapman and Hall, London, pp 327-29
    3. Arena MP, Romano A, Capozzi V, Beneduce L, Ghariani M, Grieco F, Lucas P, Spano G (2011) Expression of / Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability. Lett Appl Microbiol 53:395-02 CrossRef
    4. Back W (1994) Farbatlas und Handbuch der Getr?nkebiologie. Nuernberg, Germany
    5. Bartóak T, Szalai G, L?rincz Z, B?urcs?k G, Sági F (1994) High-speed RP-HPLC/FL analysis of amino acids after automated two-step derivatization with o-phthaldialdehyde/3-mercaptopropionic acid and 9-fluorenylmethyl chloroformate. J Liq Chromatogr Relat Technol 17:4391-403 CrossRef
    6. Behr J, G?nzle MG, Vogel RF (2006) Characterization of a highly hop-resistant / Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72:6483-492 CrossRef
    7. Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57:6074-081 CrossRef
    8. Berg JM, Tymoczko JL, Stryer L (2003) Biochemie. Spektrum Akademischer Verlag, Heidelberg
    9. Charalampopoulos D, Pandiella S, Webb C (2003) Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int J Food Microbiol 82:133-41 CrossRef
    10. Cotter PD, Gahan CG, Hill C (2001) A glutamate decarboxylase system protects / Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465-75 CrossRef
    11. Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429-53 CrossRef
    12. DeMoss RD, Bard RC, Gunsalus IC (1951) The mechanism of the heterolactic fermentation: a new route of ethanol formation. J Bacteriol 62:499-11
    13. Duary RK, Batish VK, Grover S (2012) Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous / Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep 39:2541-552 CrossRef
    14. García-Villalba R, Cortacero-Ramírez S, Segura-Carretero A, Martín-Lagos Contreras JA, Fernández-Gutiérrez A (2006) Analysis of hop acids and their oxidized derivatives and iso-alpha-acids in beer by capillary electrophoresis-electrospray ionization mass spectrometry. J Agric Food Chem 54:5400-409 CrossRef
    15. Haseleu G, Intelmann D, Hofmann T (2009) Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop ( / Humulus lupulus L.) upon wort boiling. Food Chem 116:71-1 CrossRef
    16. Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gamma-aminobutyrate in a / Lactobacillus strain. J Bacteriol 179:3362-364
    17. Intelmann D, Hofmann T (2010) On the autoxidation of bitter-tasting iso-alpha-acids in beer. J Agric Food Chem 58:5059-067 CrossRef
    18. Jaskula B, Kafarski P, Aerts G, De Cooman L (2008) A kinetic study on the isomerization of hop alpha-acids. J Agric Food Chem 56:6408-415 CrossRef
    19. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209-24 CrossRef
    20. Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46:233-44 CrossRef
    21. Krulwich TA, Lewinson O, Padan E, Bibi E (2005) Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nature reviews. Microbiology 3:566-72
    22. Kr?mer J (2002) Lebensmittel-Mikrobiologie. Verlag Eugen Ulmer, Stuttgart
    23. Lagerborg VA, Clapper WE (1952) Amino acid decarboxylases of lactic acid bacteria. J Bacteriol 63:393-97
    24. Li H, Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107-116 CrossRef
    25. Li H, Qiu T, Gao D, Cao Y (2010) Medium optimization for production of gamma-aminobutyric acid by / Lactobacillus brevis NCL912. Amino Acids 38:1439-445 CrossRef
    26. Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, Shi Y (2012) Structure and mechanism of a glutamate-GABA antiporter. Nature 483:632-36 CrossRef
    27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 CrossRef
    28. Rodríguez C, Rimaux T, Fornaguera MJ, Vrancken G, de Valdez GF, De Vuyst L, Mozzi F (2012) Mannitol production by heterofermentative / Lactobacillus reuteri CRL 1101 and / Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl Microbiol Biotechnol 93:2519-527 CrossRef
    29. Sakamoto K (2002) Beer spoilage bacteria and hop resistance in / Lactobacillus brevis. University of Groningen, Netherlands
    30. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105-24 CrossRef
    31. Shimwell JL (1937) On the relation between the staining properties of bacteria and their reaction towards hop antiseptic. Part I, II. J Inst Brew 43:111-18 CrossRef
    32. Simpson WJ (1993) Ionophoric action of trans-isohumulone on / Lactobacillus brevis. J Gen Microbiol 139:1041-045 CrossRef
    33. Simpson WJ (1993) Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J Inst Brew 99:405-11 CrossRef
    34. Simpson WJ, Fernandez JL (1994) Mechanism of resistance of lactic acid bacteria to trans-isohumulone. J Am Soc Brew Chem 52(1):9-1
    35. Simpson WJ, Fernandez JL (1992) Selection of beer-spoilage lactic acid bacteria and induction of their ability to grow in beer. Lett Appl Microbiol 14:13-6 CrossRef
    36. Simpson WJ, Smith ARW (1992) Factors affecting antibacterial activity of hop compounds and their derivatives. J Appl Bacteriol 72:327-34 CrossRef
    37. Small PL, Waterman SR (1998) Acid stress, anaerobiosis and / gadCB: lessons from / Lactococcus lactis and / Escherichia coli. Trends Microbiol 6:214-16 CrossRef
    38. Teuber M, Schmalreck AF (1973) Membrane leakage in / Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch Mikrobiol 94:159-71 CrossRef
    39. Toro M, Arzt E, Cerbòn J, Alegría G, Alva R, Meas Y, Estrada-O S (1987) Formation of ion-translocating oligomers by Nigericin. J Membr Biol 95:1- CrossRef
    40. Van der Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maquin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187-16 CrossRef
  • 作者单位:Benjamin C. Schurr (1)
    Jürgen Behr (1)
    Rudi F. Vogel (1)

    1. Lehrstuhl für Technische Mikrobiologie, Technische Universit?t München, Weihenstephaner Steig 16, 85350, Freising, Germany
文摘
In this study, we investigated the contribution of the microbial acid stress tolerance mechanism glutamate decarboxylase (GAD) system to hop tolerance and concomitant maintenance of intracellular pH (pHin) in Lactobacillus brevis. In L. brevis, the GAD system comprises a transcriptional regulator (Gad-tr), a glutamate γ-aminobutyrate antiporter (GadC) and two glutamate decarboxylases (GadB1, GadB2). Hop iso-α-acids act as ionophores, which impair cells-proton motive force. Hop-tolerant bacteria must therefore express effective mechanisms of pH maintenance such as the GAD system. To elucidate the specific roles of the two Gad isoenzymes, we examined the influence of iso-α-acids on the GAD system on a metabolic and transcriptional level of two L. brevis strains. Highly hop-tolerant L. brevis TMW 1.465 proved to perform better in maintenance of pHin in the presence of glutamate under hop stress when compared to the rather hop-sensitive strain L. brevis TMW 1.6. The transcriptional analysis unravelled the up- or downregulation of gad-tr, gadB 1 and gadC in hop-tolerant and hop-sensitive L. brevis, respectively. Since gadB 2 expression remained fairly unaltered, we concluded that L. brevis TMW 1.6 employs both Gad isoenzymes under acid stress, whereas L. brevis TMW 1.465 manages to survive with only one isoform (GadB2) and can consequently master additional hop stress better by inducing gadB 1 . These findings elucidate the GAD system’s role in high and low tolerance to antimicrobial hop components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700