Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending
详细信息    查看全文
  • 作者:Radek Musalek ; Ondrej Kovarik ; Libor Tomek…
  • 关键词:atmospheric plasma spray (APS) ; failure mechanism ; fatigue ; HVAF ; NiCoCrAlY ; thermal barrier coatings (TBCs) ; yttria ; stabilized zirconia (YSZ)
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:231-243
  • 全文大小:4,711 KB
  • 参考文献:1.Hastelloy X Alloy, Hayness International, Inc., https://​www.​haynesintl.​com/​pdf/​h3009.​pdf , 1997. Accessed 10 April, 2015.
    2.N. Curry, N. Markocsan, L. Östergren, X.-H. Li, and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2013, 22(6), p 864-872CrossRef
    3.W.R. Chen, Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat, J. Therm. Spray Technol., 2014, 23(5), p 876-884CrossRef
    4.R.S. Lima, D. Nagy, and B.R. Marple, Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling, J. Therm. Spray Technol., 2014, 24(1-2), p 152-159
    5.M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri, C. Giolli, and A. Scrivani, Isothermal Oxidation Resistance Comparison between Air Plasma Sprayed, Vacuum Plasma Sprayed and High Velocity Oxygen Fuel Sprayed CoNiCrAlY Bond Coats, Surf. Coat. Technol., 2010, 204(15), p 2499-2503CrossRef
    6.K. Szymański, M. Góral, T. Kubaszek, and P.C. Monteiro, Microstructure of TBC Coatings Deposited by HVAF and PS-PVD Methods, Solid State Phenom., 2015, 227, p 373-376CrossRef
    7.G.-J. Yang, X.-D. Xiang, L.-K. Xing, D.-J. Li, C.-J. Li, and C.-X. Li, Isothermal Oxidation Behavior of NiCoCrAlTaY Coating Deposited by High Velocity Air-Fuel Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 391-399CrossRef
    8.A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 268, p 70-76CrossRef
    9.J. Alcala, A.C. Barone, and M. Anglada, Influence of Plastic Hardening on Surface Deformation Modes around Vickers and Spherical Indents, Acta Mater., 2000, 48(13), p 3451-3464CrossRef
    10.V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778CrossRef
    11.E.S. Puchi-Cabrera, M.H. Staia, M.J. Ortiz-Mancilla, J.G. La Barbera-Sosa, E.A.O. Pérez, C. Villalobos-Gutiérrez, S. Bellayer, M. Traisnel, D. Chicot, and J. Lesage, Fatigue Behavior of a SAE 1045 Steel Coated with Colmonoy 88 Alloy Deposited by HVOF Thermal Spray, Surf. Coat. Technol., 2010, 205(4), p 1119-1126CrossRef
    12.K. Padilla, A. Velásquez, J.A. Berríos, and E.S. Puchi Cabrera, Fatigue Behavior of a 4140 Steel Coated with a NiMoAl Deposit Applied by HVOF Thermal Spray, Surf. Coat. Technol., 2002, 150(2-3), p 151-162CrossRef
    13.E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, D. Chicot, J.G. La Barbera-Sosa, and E.A. Ochoa-Pérez, Fatigue Performance of a SAE 1045 Steel Coated with a Colmonoy 88 Alloy Deposited by HVOF Thermal Spraying, Surf. Coat. Technol., 2006, 201(5), p 2038-2045CrossRef
    14.A. Ibrahim, R.S. Lima, C.C. Berndt, and B.R. Marple, Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings, Surf. Coat. Technol., 2007, 201(16-17), p 7589-7596CrossRef
    15.C.J. Villalobos-Gutiérrez, G.E. Gedler-Chacón, J.G. La Barbera-Sosa, A. Piñeiro, M.H. Staia, J. Lesage, D. Chicot, G. Mesmacque, and E.S. Puchi-Cabrera, Fatigue and Corrosion Fatigue Behavior of an AA6063-T6 Aluminum Alloy Coated with a WC-10Co-4Cr Alloy Deposited by HVOF Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4572-4577CrossRef
    16.J.A.M. de Camargo, H.J. Cornelis, V.M.O.H. Cioffi, and M.Y.P. Costa, Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy, Surf. Coat. Technol., 2007, 201(24), p 9448-9455CrossRef
    17.R.T.R. McGrann, D.J. Greving, J.R. Shadley, E.F. Rybicki, B.E. Bodger, and D.A. Somerville, The Effect of Residual Stress in HVOF Tungsten Carbide Coatings on the Fatigue Life in Bending of Thermal Spray Coated Aluminum, J. Therm. Spray Technol., 1998, 7(4), p 546-552CrossRef
    18.R.T.R. McGrann, Mechanical Fatigue Testing of Thermal Spray Coated Specimens: A Summary of Recent Developments, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, ASM International, Singapore, 2001, p 985-992
    19.H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, and M.O.H. Cioffi, Evaluation of WC-17Co and WC-10Co-4Cr Thermal Spray Coatings by HVOF on the Fatigue and Corrosion Strength of AISI, 4340 Steel, Surf. Coat. Technol., 2005, 190(2-3), p 155-164CrossRef
    20.R.C. Souza, H.J.C. Voorwald, and M.O.H. Cioffi, Fatigue Strength of HVOF Sprayed Cr3C2-25NiCr and WC-10Ni on AISI, 4340 Steel, Surf. Coatings Technol., 2008, 203(3-4), p 191-198CrossRef
    21.B. Riccardi, R. Montanari, M. Casadei, G. Costanza, G. Filacchioni, and A. Moriani, Optimisation and Characterisation of Tungsten Thick Coatings on Copper Based Alloy Substrates, J. Nucl. Mater., 2006, 352(1-3), p 29-35CrossRef
    22.M.Y.P. Costa, M.L.R. Venditti, H.J.C. Voorwald, M.O.H. Cioffi, and T.G. Cruz, Effect of WC-10%Co-4%Cr Coating on the Ti-6Al-4V Alloy Fatigue Strength, Mater. Sci. Eng. A, 2009, 507(1-2), p 29-36CrossRef
    23.H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, and B.S. Yilbas, HVOF Coating of Welded Surfaces: Fatigue and Corrosion Behaviour of Stainless Steel Coated with Inconel-625 Alloy, Surf. Coatings Technol., 2006, 200(16-17), p 4904-4908CrossRef
    24.A. Agüero, F. Camón, J. García de Blas, J.C. del Hoyo, R. Muelas, A. Santaballa, S. Ulargui, and P. Vallés, HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators, J. Therm. Spray Technol., 2011, 20(6), p 1292-1309CrossRef
    25.R. Subramanian, Y. Mori, S. Yamagishi, and M. Okazaki, Thermo-Mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen, Metall. Mater. Trans. A, 2015, 46(9), p 3999-4012CrossRef
    26.K. Obrtlík, S. Hutařová, L. Čelko, M. Juliš, T. Podrábský, and I. Šulák, Effect of Thermal Barrier Coating on Low Cycle Fatigue Behavior of Cast Inconel 713LC at 900 °C, Adv. Mater. Res., 2014, 891-892, p 848-853CrossRef
    27.M. Azadi, G.H. Farrahi, G. Winter, and W. Eichlseder, Experimental Fatigue Lifetime of Coated and Uncoated Aluminum Alloy under Isothermal and Thermo-Mechanical Loadings, Ceram. Int., 2013, 39(8), p 9099-9107CrossRef
    28.E. Tzimas, H. Müllejans, S. Peteves, J. Bressers, and W. Stamm, Failure of Thermal Barrier Coating Systems under Cyclic Thermomechanical Loading, Acta Mater., 2000, 48(18-19), p 4699-4707CrossRef
    29.H. Waki and A. Kobayashi, Influence of the Mechanical Properties of CoNiCrAlY under-Coating on the High Temperature Fatigue Life of YSZ Thermal-Barrier-Coating System, Vacuum, 2008, 83(1), p 171-174CrossRef
    30.A.K. Ray, E.S. Dwarakadasa, D.K. Das, V.R. Ranganath, B. Goswami, J.K. Sahu, and J.D. Whittenberger, Fatigue Behavior of a Thermal Barrier Coated Superalloy at 800 C, Mater. Sci. Eng. A., 2007, 448(1-2), p 294-298CrossRef
    31.S. Hutařová, K. Obrtlík, M. Juliš, L. Čelko, M. Hrčková, and T. Podrábský, Degradation of TBC Coating during Low-Cycle Fatigue Tests at High Temperature, Key Eng. Mater., 2014, 592-593, p 461-464CrossRef
    32.R. Mušálek, O. Kovářík, J. Medřický, N. Curry, and S. Bjorklund, Fatigue Testing of TBC on Structural Steel by Cyclic Bending, J. Therm. Spray Technol., 2015, 24(1-2), p 168-174
    33.R. Mušálek, O. Kovářík, T. Skiba, P. Haušild, M. Karlík, and J. Colmenares-Angulo, Fatigue Properties of Fe-Al Intermetallic Coatings Prepared by Plasma Spraying, Intermetallics, 2010, 18(7), p 1415-1418CrossRef
    34.J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4 V Substrates, Surf. Coat. Technol., 2013, 217, p 23-33CrossRef
    35.O. Kovarik, J. Siegl, J. Nohava, and P. Chraska, Young’s Modulus and Fatigue Behavior of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol., 2005, 14(2), p 231-238CrossRef
    36.O. Kovarik, J. Siegl, and Z. Prochazka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol., 2008, 17(4), p 525-532CrossRef
    37.J. Cizek, K.A. Khor, J. Siegl, and J. Bensch, A Study on the Influence of Plasma Deposited HA and TiO2 Coatings on Fatigue Lives of Low-Carbon Steel Specimens with Respect to Various Powder In-Flight Properties, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, G Montavon, Ed. May 4-7, 2009 Las Vegas, Nevada, Springer, 2010, p 361-365
    38.J. Siegl, J. Bensch, J. Čížek, and K.A. Khor, Influence of Spraying Conditions on Fatigue Behaviour of Hydroxyapatite Coatings, Acta Tech. CSAV (Ceskoslovensk Akad. Ved), 2007, 52(3), p 205-215
    39.J. Cizek, M. Matejkova, I. Dlouhy, F. Siska, C.M. Kay, J. Karthikeyan, S. Kuroda, O. Kovarik, J. Siegl, K. Loke, and K.A. Khor, Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens, J. Therm. Spray Technol., 2015, 24(5), p 758-768CrossRef
    40.O. Kovářík, P. Haušild, J. Siegl, J. Matějíček, and V. Davydov, Fatigue Life of Layered Metallic and Ceramic Plasma Sprayed Coatings, Proc. Mater. Sci., 2014, 3, p 586-591CrossRef
    41.W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-20CrossRef
    42.J. Nohava, R. Mušálek, J. Matějíček, and M. Vilémová, A Contribution to Understanding the Results of Instrumented Indentation on Thermal Spray Coatings—Case Study on Al2O3 and Stainless Steel, Surf. Coat. Technol., 2014, 240, p 243-249CrossRef
    43.R.A. Winholtz and J.B. Cohen, Generalised Least-Squares Determination of Triaxial Stress States by X-Ray Diffraction and the Associated Errors, Aust. J. Phys., 1988, 41(2), p 189-199CrossRef
    44.R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A, 1952, 65(5), p 349-354CrossRef
    45.A. Valarezo, G. Dwivedi, S. Sampath, R. Musalek, and J. Matejicek, Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates, J. Therm. Spray Technol., 2014, 24(1-2), p 160-167
    46.R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1), p 422-428CrossRef
    47.Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043CrossRef
    48.E.-R. Baek, P. Sung-Sang, R. Sihotang, and S. Choi, Heat Treatment of the Degraded Hastelloy-X for High Cycle Fatigue Properties, 9th International Conference on Fracture & Strength of Solids, June 9-13, 2013 (Jeju, Korea), 2013, p 1-10
    49.G. Di Girolamo, M. Alfano, L. Pagnotta, A. Taurino, J. Zekonyte, and R.J.K. Wood, On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings, J. Mater. Eng. Perform., 2012, 21(9), p 1989-1997CrossRef
    50.J.D. Almer, J.B. Cohen, and B. Moran, The Effects of Residual Macrostresses and Microstresses on Fatigue Crack Initiation, Mater. Sci. Eng. A, 2000, 284(1-2), p 268-279CrossRef
    51.J.D. Almer, J.B. Cohen, and R.A. Winholtz, The Effects of Residual Macrostresses and Microstresses on Fatigue Crack Propagation, Metall. Mater. Trans. A, 1998, 29(8), p 2127-2136CrossRef
    52.S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66CrossRef
    53.R. Mušálek, C. Taltavull, A.J.L. Galisteo, and N. Curry, Evaluation of Failure Micromechanisms of Advanced Thermal Spray Coatings by In Situ Experiment, Key Eng. Mater., 2014, 606, p 187-190CrossRef
    54.Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-Linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678CrossRef
  • 作者单位:Radek Musalek (1)
    Ondrej Kovarik (2)
    Libor Tomek (2)
    Jan Medricky (1) (2)
    Zdenek Pala (1)
    Petr Hausild (2)
    Jiri Capek (3)
    Kamil Kolarik (3)
    Nicholas Curry (4) (5)
    Stefan Bjorklund (4)

    1. Department of Materials Engineering, Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 182 00, Praha 8, Czech Republic
    2. Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Czech Technical University in Prague, Trojanova 13, 120 00, Praha 2, Czech Republic
    3. Faculty of Nuclear Sciences and Physical Engineering, Department of Solid State Engineering, Czech Technical University in Prague, Trojanova 13, 120 00, Praha 2, Czech Republic
    4. University West, 461 86, Trollhättan, Sweden
    5. Treibacher Industrie AG, Auer-von-Welsbach-Straße 1, 9330, Althofen, Austria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Our previous experiments with low-cost steel substrates confirmed that individual steps of conventional thermal barrier coating (TBC) deposition may influence fatigue properties of the coated samples differently. In the presented study, testing was carried out for TBC samples deposited on industrially more relevant Hastelloy X substrates. Samples were tested after each step of the TBC deposition process: as-received (non-coated), grit-blasted, bond-coated (NiCoCrAlY), and bond-coated + top-coated yttria-stabilized zirconia (YSZ). Conventional atmospheric plasma spraying (APS) was used for deposition of bond coat and top coat. In addition, for one half of the samples, dual-layer bond coat was prepared by combination of high-velocity air-fuel (HVAF) and APS processes. Samples were tested in the as-sprayed condition and after 100 hours annealing at 980 °C, which simulated application-relevant in-service conditions. Obtained results showed that each stage of the TBC manufacturing process as well as the simulated in-service heat exposure may significantly influence the fatigue properties of the TBC coated part. HVAF grit-blasting substantially increased the fatigue performance of the uncoated substrates. This beneficial effect was suppressed by deposition of APS bond coat but not by deposition of dual-layer HVAF + APS bond coat. All heat-treated samples showed again enhanced fatigue performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700