Effect of Porosity on Strength Distribution of Microcrystalline Cellulose
详细信息    查看全文
  • 作者:?zgür Kele?/a> ; Nicholas P. Barcenas ; Daniel H. Sprys ; Keith J. Bowman
  • 关键词:diametral compression test ; finite element simulations ; normal distribution ; reliability ; Weibull modulus
  • 刊名:AAPS PharmSciTech
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:6
  • 页码:1455-1464
  • 全文大小:1,154 KB
  • 参考文献:1.Roberts R, Rowe R, York P. The measurement of the critical stress intensity factor (KIC) of pharmaceutical powders using three point single edge notched beam (SENB) testing. Int J Pharm. 1993;91(2):173-2.CrossRef
    2.Hancock BC, Clas SD, Christensen K. Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: the elasticity and fracture behavior of microcrystalline cellulose. Int J Pharm. 2000;209(1):27-5.CrossRef PubMed
    3.Inman S, Briscoe B, Pitt K, Shiu C. Axial tensile fracture of micro4 crystalline cellulose compacts. Int J Pharm. 2008;349(1):172-.CrossRef PubMed
    4.Zinchuk AV, Mullarney MP, Hancock BC. Simulation of roller compaction using a laboratory scale compaction simulator. Int J Pharm. 2004;269(2):403-5.CrossRef PubMed
    5.Haware RV, Tho I, Bauer-Brandl A. Evaluation of a rapid approximation method for the elastic recovery of tablets. Powder Technol. 2010;202(1):71-.CrossRef
    6.Sonnergaard JM. Distribution of crushing strength of tablets. Eur J Pharm Biopharm. 2002;53(3):353-.CrossRef PubMed
    7.Stanley P. Mechanical strength testing of compacted powders. Int J Pharm. 2001;227(1):27-8.CrossRef PubMed
    8.Podczeck F. Investigations into the mechanical strength anisotropy of Sorbitol Instant compacts made by uniaxial compression. Adv Powder Technol. 2007;18(4):361-9.CrossRef
    9.Kennerley J, Newton J, Stanley P. A modified Weibull treatment for the analysis of strength-test data from non-identical brittle specimens. J Mater Sci. 1982;17(10):2947-4.CrossRef
    10.Stanley P, Newton J. Variability in the strength of powder compacts. J Powder Bulk Solids Technol. 1977;1:13-.
    11.Kennerley J. Variability in the mechanical strength of tablets. Acta Pharm Technol Suppl. 1979;7:53-.
    12.Podczeck F. Methods for the practical determination of the mechanical strength of tablets—from empiricism to science. Int J Pharm. 2012;436(1):214-2.CrossRef PubMed
    13.Ambros MC, Podczeck F, Podczeck H, Newton JM. The characterization of the mechanical strength of chewable tablets. Pharm Dev Technol. 1998;3(4):509-5.CrossRef PubMed
    14.Weibull W. A statistical theory of the strength of materials. Swedish Royal Institute for Engineering Research, 1939; p. 1-5.
    15.Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18(3):293-.
    16.Pitchumani R, Zhupanska O, Meesters GM, Scarlett B. Measurement and characterization of particle strength using a new robotic compression tester. Powder Technol. 2004;143:56-4.CrossRef
    17.Salako M, Podczeck F, Newton JM. Investigations into the deformability and tensile strength of pellets. Int J Pharm. 1998;168(1):49-7.CrossRef
    18.Sonnergaard JM. A new brittleness index for compacted tablets. J Pharm Sci. 2013;102(12):4347-2.CrossRef PubMed
    19.Nelson K, Wang L. Determination of time course of tablet disintegration II: method using continuous functions. J Pharm Sci. 1978;67(1):86-.CrossRef PubMed
    20.Langenbucher F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24(12):979-1.CrossRef PubMed
    21.Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-3.CrossRef PubMed
    22.Elkoshi Z. On the variability of dissolution data. Pharm Res. 1997;14(10):1355-2.CrossRef PubMed
    23.Ogden J. Weibull shelf-life model for pharmaceuticals. Pharm Technol. 1978;2(10):45-.
    24.Castillo S, Villafuerte L. Compactibility of ternary mixtures of pharmaceutical powders. Pharm Acta Helv. 1995;70(4):329-7.CrossRef
    25.Kachrimanis K, Nikolakakis I, Malamataris S. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding. J Pharm Sci. 2003;92(7):1489-01.CrossRef PubMed
    26.Bolhuis GK, Chowhan ZT. Materials for direct compaction. Drugs Pharm Sci. 1996;71:419-00.
    27.Kele? ?, Garcia RE, Bowman KJ. Stochastic failure of isotropic, brittle materials with uniform porosity. Acta Mater. 2013;61(8):2853-2.
    28.Kele? ?, Garcia RE, Bowman KJ. Deviations from Weibull statistics in brittle porous materials. Acta Mater. 2013;61(19):7207-5.
    29.Sonnergaard JM. Quantification of the compactibility of pharmaceutical powders. Eur J Pharm Biopharm. 2006;63(3):270-.CrossRef PubMed
    30.Porion P, Busignies V, Mazel V, Leclerc B, Evesque P, Tchoreloff P. Anisotropic porous structure of pharmaceutical compacts evaluated by PGSTE-NMR in relation to mechanical property anisotropy. Pharm Res. 2010;27(10):2221-3.CrossRef PubMed
    31.Kachrimanis K, Malamataris S. Compact size and mechanical strength of pharmaceutical diluents. Eur J Pharm Sci. 2005;24(2):169-7.CrossRef PubMed
    32.Levis S, Deasy P. Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm. 2001;230(1):25-3.CrossRef PubMed
    33.Almaya A, Aburub A. Effect of parti
  • 作者单位:?zgür Kele?/a> (1)
    Nicholas P. Barcenas (1)
    Daniel H. Sprys (1)
    Keith J. Bowman (1) (2)

    1. Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Engineering 1 Building, Suite 243, Chicago, Illinois, 60616-3793, USA
    2. School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907-2044, USA
  • 刊物主题:Pharmacology/Toxicology; Biotechnology; Biochemistry, general; Pharmacy;
  • 出版者:Springer US
  • ISSN:1530-9932
文摘
Fracture strength of pharmaceutical compacts varies even for nominally identical samples, which directly affects compaction, comminution, and tablet dosage forms. However, the relationships between porosity and mechanical behavior of compacts are not clear. Here, the effects of porosity on fracture strength and fracture statistics of microcrystalline cellulose compacts were investigated through diametral compression tests. Weibull modulus, a key parameter in Weibull statistics, was observed to decrease with increasing porosity from 17 to 56 vol.%, based on eight sets of compacts at different porosity levels, each set containing ?0 samples, a total of 407 tests. Normal distribution fits better to fracture data for porosity less than 20 vol.%, whereas Weibull distribution is a better fit in the limit of highest porosity. Weibull moduli from 840 unique finite element simulations of isotropic porous materials were compared to experimental Weibull moduli from this research and results on various pharmaceutical materials. Deviations from Weibull statistics are observed. The effect of porosity on fracture strength can be described by a recently proposed micromechanics-based formula. Key words diametral compression test finite element simulations normal distribution reliability Weibull modulus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700