Properties of coatings of the Al–Cr–Fe–Co–Ni–Cu–V high entropy alloy produced by the magnetron sputtering
详细信息    查看全文
  • 作者:L. R. Shaginyan ; V. F. Gorban' ; N. A. Krapivka…
  • 关键词:alloys ; coatings ; sputtering ; diffraction of electrons ; scanning electron microscopy ; mechanical properties
  • 刊名:Journal of Superhard Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:25-33
  • 全文大小:2,628 KB
  • 参考文献:1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Microstructural control and properties optimization of high-entropy alloys, Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.CrossRef
    2.Zhang, Y. and Zhou, Y.J., Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 2007, vol. 561–565, pp. 1337–1339.CrossRef
    3.Chen, M.-R., Lin, S.-J., Yen, J.-W., Chen, S.-K., Huang, Y.-S., and Tu, Ch.-P., Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys, Mater. Transact., 2006, vol. 47, no. 5, pp. 1395–1401.CrossRef
    4.Firstov, S.A., Gorban’, V.F., Krapivka, N.A., Pechkovskii, E.P., Danilenko, N.I., and Karpets, M.V., Mechanical properties of cast multicomponent alloys at high temperatures, Modern Problems of the Physical Materials Science, 2008, issue 17, pp. 126–139.
    5.Li, C., Li, J. C., Zhao, M., and Jiang, Q., Effect of alloying elements microstructure on properties of multiprincipal elements high-entropy alloys, J. Alloy. Compd., 2009, vol. 475, no. 1–2, pp. 752–757.CrossRef
    6.Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., A new class of nanomaterials with unique properties based on multicomponent high-entropy alloys, in Physicochemical Principles of the Formation and Modification of Microand Nanostructures, Kharkov: NFTTs MONMS, 2011, pp. 186–191.
    7.Senkov, O.N., Scott, J.M., Senkova, S.V., and Miracle, D.B., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. All. Comp., 2011, vol. 509, no. 20, pp. 6043–6048.CrossRef
    8.Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., Hardening and mechanical properties of cast high-entropy alloys, Composites and Nanostructures, 2011, no. 2, pp. 5–20.
    9.Zhang, Y. and Zhou, Y.J., Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 2007, no. 561–565, pp. 1337–1339.CrossRef
    10.Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., New class of materials—high-entropy alloys and coatings, Vestnik TGU, 2013, vol. 18, issue 4, pp. 1938–1940.
    11.Tsai, D.-C., Shieu, F.-Sh., Chang, Sh.-Yi, Yao, H.-C., and Deng, M.-J., Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers, J. Electrochem. Soc., 2010, vol. 157, no. 3, pp. K52–K58.
    12.Firstov, S.A., Gorban’, V.F., Danilenko, N.I., Karpets, M.V., Andreyev, A.A., and Makarenko, E.S., Thermostability of superhard nitride coatings based on multicomponent high-entropy alloy of the TiVZrNbHf system, Powder Metallurgy, 2013, no. 9/10, pp. 93–102.
    13.Ignatovich, S.R. and Zakiev, I.M., Universal micro/nano-indentomer “Micron-gamma”, Zavodskaya Laboratoriya, 2011, vol. 77, no. 1, pp. 61–67.
    14.Lin, C.H., Duh, J.G., and Yeh, J.W., Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, Surf. Coat. Technol., 2007, vol. 201, pp. 6304–6308.CrossRef
    15.Shaginyan, L.R., Misina, M., Kadlec, S., Jastrabik, L., Mackova, A., and Perina V., Mechanism of the film composition formation during magnetron sputtering of WTi, J. Vac. Sci. Technol., 2001, vol. A19, pp. 2554–2560.CrossRef
    16.Smith, D.L., Thin film deposition, 2nd ed., New York: McGraw-Hill, 1997.
    17.Hahn, H. and Averback, R.S., Materials with structural hierarchy, J. Appl. Phys., 1990 vol. 67, pp. 1113–1115.CrossRef
    18.Fancey, K.S., A coating thickness uniformity model for physical vapour deposition systems, Surf. Coat. Technol., 1995, vol. 71, pp. 16–29.CrossRef
    19.Shaginyan, L.R. and Han, J.G., Role of energy and composition of film-forming species in formation of composition and structure of compound films, Thin Solid Films, 2004, vol. 458, pp. 186–190.CrossRef
    22.Ohring, M., Materials science of thin films, 2nd ed., New York: Academic Press, 2002.
    23.Chen, T.K., Wong, M.S., Shun, T., and Yeh, J.W., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 2005, vol. 200, pp. 1361–1365.CrossRef
    24.Ye, X.Y., Ma, M.X., Liu, W.J, Li, L., Zhong, M.L., Liu, Y.X, and Wu, Q.W., Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding, Adv. Mater. Sci. Eng., 2011, vol. 2011, pp.1–7.CrossRef
    25.Huang, Y.S., Chen, L., Lui, H.W., Cai, M.H., and Yeh, J.W., Microstructure, hardness, resistivity, and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy, Mater. Sci. Eng. A, 2007, vol. 457, pp. 77–83.CrossRef
    26.Pilyankevich, A.N., Kulykovski, V.Yu., and Shaginyan, L.R., Influence of the ion bombardment on structure of ion plated indium films, Thin Solid Films, 1986, vol. 137, pp. 215–224.CrossRef
    27.Huang, P.-K. and Yeh, J.-W., Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings, J. Phys. D: Appl. Phys., 2009, vol. 42, art. 115401.CrossRef
    28.Lin, M.-I., Tsai, M.-H., Shen, W.-J., and Yeh, J.-W., Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 2010, vol. 518, pp. 2732–2737.CrossRef
    29.Shaginyan, L.R., Han, J.G., Shaginyan, V.R., and Musil, J., Evolution of film temperature during magnetron sputtering, J. Vac. Sci. Technol. A, 2006, vol. 24, pp. 1083–1090.CrossRef
    30.Firstov, S.A., Rogul, T.G., Gorban, V.F., and Pechkovsky, E.P., Ultimate strengthening, theoretical and limit tool hardness, Eng. Mater., 2009, vol. 409, pp. 128–136.
    31.Firstov, S.A., Rogul, T.G., and Dub, S.N., Grain boundary engineering of nanostructured chromium films, in Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, Springer, 2005. pp. 225–232.CrossRef
  • 作者单位:L. R. Shaginyan (1)
    V. F. Gorban’ (1)
    N. A. Krapivka (1)
    S. A. Firstov (1)
    I. F. Kopylov (1)

    1. Frantsevich Institute for Materials Science Problems, National Academy of Sciences of Ukraine, vul. Krzhizhanovs’kogo 3, Kiev, 03680, Ukraine
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-9408
文摘
It has been found that coatings from an Al–Fe–Co–Ni–Cu–Cr–V high entropy equiatomic alloy produced by the magnetron sputtering have nanocrystalline microstructures, are textured, and present a solid two-phase solution, which crystallizes in the bcc (a = 2.91 Å) and fcc (a = 3.65 Å) phases. The ion bombardment of a growing coating caused by the bias voltage (0–(–200) V), which has been applied to the substrate, decreases the growth rate of a condensate and affects its composition and structure. It has been shown that the composition of coatings deposited without an ion bombardment coincides with the target composition, whereas an increase of the ion bombardment intensity leads to the depletion of the coating composition in Al, Cu, and Ni and increase the microhardness. The anisotropy of the coating produced has been revealed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700