Sharp MSE Bounds for Proximal Denoising
详细信息    查看全文
  • 作者:Samet Oymak ; Babak Hassibi
  • 刊名:Foundations of Computational Mathematics
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:16
  • 期:4
  • 页码:965-1029
  • 全文大小:1,917 KB
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Computer Science, general
    Math Applications in Computer Science
    Linear and Multilinear Algebras and Matrix Theory
    Applications of Mathematics
  • 出版者:Springer New York
  • ISSN:1615-3383
  • 卷排序:16
文摘
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.KeywordsConvex optimizationProximity operatorStructured sparsityStatistical estimationModel fitting Stochastic noiseLinear inverseGeneralized LASSO

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700