Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS
详细信息    查看全文
  • 作者:Natalia Kulminskaya ; Suresh Kumar Vasa ; Karin Giller…
  • 关键词:SH3 domain ; Solid ; state NMR (ssNMR) ; MAS ; Homonuclear isotropic mixing ; Perdeuterated proteins ; MOCCA
  • 刊名:Journal of Biomolecular NMR
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:63
  • 期:3
  • 页码:245-253
  • 全文大小:4,031 KB
  • 参考文献:Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194:16–24CrossRef ADS
    Agarwal V, Diehl A, Skrynnikov N, Reif B (2006) High resolution 1H detected 1H,13C correlation spectra in MAS solid-state NMR using deuterated proteins with selective 1H,2H isotopic labeling of methyl groups. J Am Chem Soc 128:12620–12621CrossRef
    Agarwal V et al (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256CrossRef
    Akbey U, Oschkinat H, van Rossum BJ (2009) Double-nucleus enhanced recoupling for efficient 13C MAS NMR correlation spectroscopy of perdeuterated proteins. J Am Chem Soc 131:17054CrossRef
    Asami S, Schmieder P, Reif B (2010) High resolution 1H-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135CrossRef
    Asami S, Porter JR, Lange OF, Reif B (2015) Access to Cα backbone dynamics of biological solids by 13C T1 relaxation and molecular dynamics simulation. J Am Chem Soc 137:1094–1100CrossRef
    Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson Ser A 121:65–69CrossRef ADS
    Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497CrossRef
    Bellstedt P, Herbst C, Häfner S, Leppert J, Görlach M, Ramachandran R (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54:325–335CrossRef
    Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical-shift correlation spectroscopy in rotating solids–radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627CrossRef ADS
    Bennett AE, Rienstra CM, Griffiths JM, Zhen WG, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479CrossRef ADS
    Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426CrossRef ADS
    Brinkmann A, Eden M, Levitt MH (2000) Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: double quantum recoupling of multiple-spin systems. J Chem Phys 112:8539–8554CrossRef ADS
    Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321:205–215CrossRef ADS
    Chevelkov V, Rehbein K, Diel A, Reif B (2006) Ultra-high resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881CrossRef
    Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200CrossRef
    Chevelkov V, Fink U, Reif B (2009) Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. J Am Chem Soc 131:14018–14022CrossRef
    de Boer I et al (2004) MAS NMR structures of aggregated cadmium chlorins reveal molecular control of self-assembly of chlorosomal bacteriochlorophylls. J Phys Chem B 108:16556–16566CrossRef
    Felli IC, Pierattelli R, Glaser SJ, Luy B (2009) Relaxation-optimised Hartmann–Hahn transfer using a specifically Tailored MOCCA-XY16 mixing sequence for carbonyl-carbonyl correlation spectroscopy in 13C direct detection NMR experiments. J Biomol NMR 43:187–196CrossRef
    Goddard TD, Kneller DG SPARKY 3, University of California, San Francisco
    Grzesiek S, Bax A (1995) Spin-locked multiple quantum coherence for signal enhancement in heteronuclear multidimensional NMR experiments. J Biomol NMR 6:335–339CrossRef
    Hardy EH, Verel R, Meier BH (2001) Fast MAS total through-bond correlation spectroscopy. J Magn Reson 148:459–464CrossRef ADS
    Herbst C, Herbst J, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2011) Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing sequences. J Biomol NMR 50:277–284CrossRef
    Hohwy M, Jacobsen HJ, Edén M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694CrossRef ADS
    Hou G, Byeon I-JL, Ahn J, Gronenborn AM, Polenova T (2011) 1H–13C/1H–15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J Am Chem Soc 133:18646–18655CrossRef
    Hou G, Byeon IJ, Ahn J, Gronenborn AM, Polenova T (2012) Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. J Chem Phys 137:134201CrossRef ADS
    Huber M, Hiller S, Schanda P, Ernst M, Böckmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. J Chem Phys 12:915–918
    Huber M, Böckmann A, Hiller S, Meier BH (2012) 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 14:5239–5246CrossRef
    Kadkhodaie M, Rivas O, Tan M, Mohebbi A, Shaka AJ (1991) Broadband homonuclear cross polarization using flip-flop spectroscopy. J Magn Reson 91:437–443ADS
    Knight MJ et al (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701CrossRef
    Knight MJ et al (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100CrossRef ADS
    Kramer F, Peti W, Griesinger C, Glaser SJ (2001) Optimized homonuclear Carr-Purcell-type dipolar mixing sequences. J Magn Reson 149:58–66CrossRef ADS
    Kristiansen PE, Carravetta M, Beek JDv, Lai WC, Levitt MH (2006) Theory and applications of supercycled symmetry-based recoupling sequences in solid-state NMR. J Chem Phys 124:234510–234519CrossRef ADS
    Lamley JM et al (2014) Solid-state NMR of a protein in a precipitated complex with a full-length antibody. J Am Chem Soc 136:16800–16806CrossRef
    Leppert J, Ohlenschlager O, Gorlach M, Ramachandran R (2004) Adiabatic TOBSY in rotating solids. J Biomol NMR 29:167–173CrossRef
    Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of Nuclear Magnetic Resonance, Advances in NMR, vol 9. Wiley, Chichester, pp 165–196
    Lewandowski JR, Dumez J-N, Akbey U, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211CrossRef
    Linser R (2011) Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. J Biomol NMR 51:221–226CrossRef
    Linser R, Chevelkov V, Diehl A, Reif B (2007) Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins. J Magn Reson 189:209–216CrossRef ADS
    Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93CrossRef ADS
    Linser R, Fink U, Reif B (2009) Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy. J Am Chem Soc 131:13703–13708CrossRef
    Linser R, Fink U, Reif B (2010) Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132:8891–8893CrossRef
    Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011a) Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a micro-crystalline protein with MAS solid state NMR. J Am Chem Soc 133:5905–5912CrossRef
    Linser R et al (2011b) Proton detected solid-state NMR of fibrillar and membrane proteins. Angew Chem Int Ed 50:4508–4512CrossRef
    Linser R, Bardiaux B, Hyberts SG, Kwan AH, Morris VK, Sunde M, Wagner G (2014) Solid-state NMR structure determination from diagonal-compensated, sparsely nonuniform-sampled 4D proton–proton restraints. J Am Chem Soc 136:11002–11010CrossRef
    McDermott AE, Creuzet FJ, Kolbert AC, Griffin RG (1992) High-resolution magic-angle-spinning NMR spectra of protons in deuterated solids. J Magn Reson 98:408–413ADS
    Morcombe CR, Paulson EK, Gaponenko V, Byrd RA, Zilm KW (2005) 1H-15N correlation spectroscopy of nanocrystalline proteins. J Biomol NMR 31:217–230CrossRef
    Nielsen NC, Creuzet F, Griffin RG, Levitt MH (1992) Enhanced double-quantum nuclear-magnetic-resonance in spinning solids at rotational resonance. J Chem Phys 96:5668–5677CrossRef ADS
    Nielsen AB, Jain SK, Nielsen NC (2011) Low-power homonuclear dipolar recoupling using supercycled symmetry-based and exponentially-modulated pulse sequences. Chem Phys Lett 503:310–315CrossRef ADS
    Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967CrossRef
    Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637CrossRef ADS
    Takeuchi K, Gal M, Takahshi H, Shimada I, Wagner G (2011) HNCA-TOCSY-CANH experiments with alternate (13)C-(12)C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment. J Biomol NMR 49:17–26CrossRef
    Teymoori G, Pahari B, Viswanathan E, Eden M (2013) Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling. J Magn Res 236:31–40CrossRef ADS
    Verel R, Baldus M, Ernst M, Meier BH (1998) A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chem Phys Lett 287:421–428CrossRef ADS
    Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the dream scheme. J Magn Reson 150:81–99CrossRef ADS
    Yoshimura Y, Kulminskaya NV, Mulder FA (2015) Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C’ chemical shifts of multiple contiguous residues in highly resolved 3D spectra. J Biomol NMR 61:109–121CrossRef
  • 作者单位:Natalia Kulminskaya (1)
    Suresh Kumar Vasa (1)
    Karin Giller (1)
    Stefan Becker (1)
    Rasmus Linser (1)

    1. Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Polymer Sciences
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-5001
文摘
Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear 13C–13C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear 13C–13C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700