Max–plus matrix method and cycle time assignability and feedback stabilizability for min–max–plus systems
详细信息    查看全文
  • 作者:Yuegang Tao (1) (2)
    Guo-Ping Liu (3) (4)
    Xiaowu Mu (5)
  • 关键词:Cycle time assignability ; Feedback stabilizability ; Max–plus matrix method ; Min–max–plus system
  • 刊名:Mathematics of Control, Signals, and Systems (MCSS)
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:25
  • 期:2
  • 页码:197-229
  • 全文大小:548KB
  • 参考文献:1. Akian M, Gaubert S, Lakhoua A (2008) The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J Control Optim 47:817-48 CrossRef
    2. Astolfi A, Colaneri P (2005) Hankel/Toeplitz matrices and the static output feedback stabilization problem. Math Control Signals Syst 17:231-68 CrossRef
    3. Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity, Wiley, New York.
    4. Bertoluzza S, Falletta S, Manzini G (2008) Efficient design of residual-based stabilization techniques for the three fields domain decomposition method. Math Models Methods Appl Sci 18:973-99 CrossRef
    5. Chakraborty S, Yun KY, Dill DL (1999) Timing analysis of asynchronous systems using time separation of events. IEEE Trans Comput Aided Des Integr Circuits Syst 18:1061-076 CrossRef
    6. Chen W, Tao Y (2000) Observability and reachability for nonlinear discrete event dynamic systems and colored graphs. Chin Sci Bull 45:2457-461
    7. Cochet-Terrasson J, Gaubert S, Gunawardena J (1999) A constructive fixed point theorem for min-max functions. Dyn Stab Syst 14:407-33 CrossRef
    8. Cohen G, Moller P, Quadrat J-P, Viot M (1992) Linear system theory for discrete event systems. In: Ho Y C (ed) Discrete event dynamic systems: analyzing complexity and performance in the modern world. A selected Reprint Volume, IEEE Control Systems Society
    9. Cohen G, Moller P, Quadrat J-P, Viot M (1985) A linear system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEEE Trans Autom Control 30:210-20 CrossRef
    10. Cohen G, Moller P, Quadrat J-P, Viot M (1992) Algebraic tools for the performance evaluation of discrete event systems. In: Ho YC (ed) Discrete event dynamic systems: analyzing complexity and performance in the modern world. A selected reprint volume, IEEE Control Systems Society
    11. Commault C (1998) Feedback stabilization of some event graph models. IEEE Trans Autom Control 43:1419-423 CrossRef
    12. Cottenceau B, Hardouin L, Boimond JL, Ferrier JL (1999) Synthesis of greatest linear feedback for timed event graphs in dioid. IEEE Trans Autom Control 44:1258-262 CrossRef
    13. Cottenceau B, Lhommeau M, Hardouin L, Boimond J (2003) On timed event graph stabilization by output feedback in dioid. Kybernetika 39:165-76
    14. Cuninghame-Green RA (1979) Minimax algebra, Number 166 in Lecture Notes in Economics and Mathematical Systems, Springer, Berlin
    15. Cuninghame-Green RA (1991) Minimax algebra and applications. Fuzzy Sets Syst 41:251-67 CrossRef
    16. De Schutter B, van den Boom T (2001) Model predictive control for max-plus linear discrete event systems. Automatica 37:1049-056 CrossRef
    17. De Schutter B, van den Boom T (2000) Model predictive control for max-min-plus systems. Boel R, Stremersch G (eds) DES: analysis and control, vol 569. Kluwer Int. Series in Engineering and Computer Science, KAP, Boston, pp 201-08
    18. Farahani SS, van den Boom T, De Schutter B (2011) Model predictive control for stochastic max-min-plus-scaling systems-An approximation approach. In: Proceedings of the 50th IEEE conference on decision and control and European control conference. Orlando, Florida, Dec, pp 391-96
    19. Fleming WH, McEneaney WM (2000) A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J Control Optim 38:683-10 CrossRef
    20. Gaubert S (1992) Resource optimization and (min, +) spectral theory. IEEE Trans Autom Control 40:1931-934 CrossRef
    21. Gaubert S, Butkovic P, Cuninghame-Green R (1998) Minimal (max,+) realization of convex sequences. SIAM J Control Optim 36:137-47 CrossRef
    22. Gaubert S, Gunawardena J (1998) The duality theorem for min–max functions. CR Acad Sci Ser I Math 326:43-8 CrossRef
    23. Gunawardena J (1994) Min-max functions. Discrete Event Dyn Syst 4:377-06 CrossRef
    24. Gunawardena J (1994) Cycle times and fixed points of min-max functions. Lecture Notes in Control and Information Sciences, Springer, Berlin, vol 199, pp 266-72
    25. Hardouin L, Maia CA, Cottenceau B, Lhommeau M (2010) Observer design for (max, plus) linear systems. IEEE Trans Autom Control 55-:538-43 CrossRef
    26. Heidergott B, Olsder GJ, van der Woude J (2006) Max Plus at work: modeling and analysis of synchronized systems. Princeton University Press, New Jersey
    27. Jean-Marie A, Olsder GJ (1996) Analysis of stochastic min–max systems: results and cinjectures. Math Model 23:175-89
    28. Karafyllis I (2006) Stabilization by means of time-varying hybrid feedback. Math Control Signals Syst 18:236-59 CrossRef
    29. Maia CA, Andrade CR, Hardouin L (2011) On the control of max-plus linear system subject to state restriction. Automatica 47:988-92 CrossRef
    30. McCaffrey D (2008) Policy iteration and the max-plus finite element method. SIAM J Control Optim 47:2912-929 CrossRef
    31. McEneaney WM (2004) Max-plus eigenvector methods for nonlinear $H_\infty $ problems: error analysis. SIAM J Control Optim 43:379-12 CrossRef
    32. Mikkola KM (2008) Weakly coprime factorization and state-feedback stabilization of discrete-time systems. Math Control Signals Syst 20:321-50 CrossRef
    33. Mu S, Chu T, Wang L, Yu W (2004) Output feedback control of networked systems. Int J Autom Comput 1:26-4 CrossRef
    34. Necoara I, De Schutter B, van den Boom T, Hellendoorn H (2008) Model predictive control for uncertain max-min-plus-scaling systems. Int J Control 81:701-13 CrossRef
    35. Olsder GJ (1991) Eigenvalues of dynamic max-min systems. Discrete Event Dyn Syst 1:177-07 CrossRef
    36. Olsder GJ (1997) Timetables in the max-plus algebra. Euclides 72:158-63
    37. Tao Y, Chen W (2003) Cycle time assignment of min–max systems. Int J Control 76:1790-799 CrossRef
    38. Tao Y, Liu G-P (2005) State feedback stabilization and majorizing achievement of min–max–plus systems. IEEE Trans Autom Control 50:2027-033 CrossRef
    39. Tao Y, Liu G-P, Chen W (2007) Globally optimal solutions of max–min systems. J Glob Optim 39:347-63 CrossRef
    40. van der Woude J (2001) A characterization of the eigenvalue of a general (min, max, +)-system. Discrete Event Dyn Syst 3:203-10 CrossRef
    41. van der Woude J, Subiono (2003) Conditions for structural existence of an eigenvalue of bipartite (min, max, +)-system. Theor Comput Sci 293:13-4.
    42. Yang L, Guan X, Long C, Luo X (2008) Feedback stabilization over wireless network using adaptive coded modulation. Int J Autom Comput 5:381-88 CrossRef
  • 作者单位:Yuegang Tao (1) (2)
    Guo-Ping Liu (3) (4)
    Xiaowu Mu (5)

    1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, People’s Republic of China
    2. Key Lab of Computational Mathematics and Applications, Hebei, Shijiazhuang, 050024, People’s Republic of China
    3. Faculty of Advanced Technology, University of Glamorgan, Pontypridd, CF37 1DL, UK
    4. CTGT Center, Harbin Institute of Technology, Harbin, 150001, People’s Republic of China
    5. Department of Mathematics, Zhengzhou University, Henan, 450001, People’s Republic of China
  • ISSN:1435-568X
文摘
A variety of problems arising in nonlinear systems with timing constraints such as manufacturing plants, digital circuits, scheduling managements, etc., can be modeled as min–max–plus systems described by the expressions in which the operations minimum, maximum and addition appear. This paper applies the max–plus matrix method to analyze the cycle time assignability and feedback stabilizability of min–max–plus systems with min–max–plus inputs and max–plus outputs, which are nonlinear extensions of the systems studied in recent years. The max–plus projection matrix representation of closed-loop systems is introduced to establish some structural and quantitative relationships between reachability, observability, cycle time assignability and feedback stabilizability. The necessary and sufficient conditions for the cycle time assignability with respect to a state feedback and an output feedback, respectively, and the sufficient condition for the feedback stabilizability with respect to an output feedback are derived. Furthermore, one output feedback stabilization policy is designed so that the closed-loop systems take the maximal Lyapunov exponent as an eigenvalue. The max–plus matrix method based on max–plus algebra and directed graph is constructive and intuitive, and several numerical examples are given to illustrate this method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700