Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems
详细信息    查看全文
文摘
In this paper, we propose a design approach of composite nonlinear feedback control technique for the synchronization of master/slave nonlinear systems with time-varying delays, Lipschitz nonlinear functions and parametric uncertainties. Based on the Lyapunov–Krasovskii stabilization theory and linear matrix inequalities, a new sufficient condition is generated for the synchronization of chaotic systems with nonlinearities and perturbations on the master and slave systems. By using the Barbalat’s lemma, the proposed control method guarantees that the states of the master and slave systems are synchronized with an asymptotic convergence rate. Simulation results are demonstrated on two forms of Chua’s chaotic system, which illustrate that the suggested design technique yields satisfactory transient performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700