Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant
详细信息    查看全文
  • 作者:S. Ningshen ; M. Sakairi
  • 关键词:Corrosion resistance ; Nitric acid corrosion ; Stainless steel ; Boiling test ; XPS ; SEM
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:12
  • 页码:3533-3542
  • 全文大小:1,166 KB
  • 参考文献:1.Raj B, Kamachi Mudali U (2006) Materials development and corrosion problems in nuclear fuel reprocessing plants. Prog Nucl Energy 48:283-13CrossRef
    2.Fauvet P, Balbaud F, Robin R, Tran QT, Mugnier A, Espinoux D (2008) Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J Nucl Mater 375:52-4CrossRef
    3.Whillock GOH, Worthington SE (2010) Corrosion in nitric acid. In: Richardson TJA, Cottis BRA, Lindsay R, Lyon S, Scantlebury DJD, Stott H, Graham M (eds) Shreir’s corrosion, vol 2. Elsevier, Amsterdam, pp. 1250-269CrossRef
    4.Schillmoller CM (1999) Select the best alloys to resist nitric acid. Chem Eng Prog 95:65-9
    5.Ningshen S, Kamachi Mudali U, Ramya S, Raj B (2011) Corrosion behaviour of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros Sci 53:64-0CrossRef
    6.Kain V, De PK (2005) Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels. Int J Nucl Energy Sci Technol 1:220-31CrossRef
    7.Ningshen S, Kamachi Mudali U, Amarendra G, Raj B (2009) Corrosion assessment of nitric acid grade austenitic stainless steels. Corros Sci 51:322-29CrossRef
    8.Whillock GOH, Dunnett BF, Takeuchi M (2005) Techniques for measuring the end-grain corrosion resistance of austenitic stainless steels. Corrosion 61:58-7CrossRef
    9.Dillon CP (1992) Corrosion of stainless steels by nitric acid. Mater Perform 31:51-3
    10.Kapoor K, Kain V, Gopalkrishna T, Sanyal T, De PK (2003) High corrosion resistant Ti-%Ta-.8%Nb alloy for fuel reprocessing application. J Nucl Mater 322:36-4CrossRef
    11.Robin R, Miserque F, Spagnol V (2008) Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid. J Nucl Mater 375:65-1CrossRef
    12.Armijo JS, Wilde BE (1968) Influence of Si content on the corrosion resistance of austenitic Fe-Cr-Ni alloys in oxidizing acids. Corros Sci 8:649-64CrossRef
    13.Ningshen S, Sakairi M, Suzuki K, Ukai S (2014) The surface characterization and corrosion resistance of 11 % Cr ferritic/martensitic and 9-5 % Cr ODS steels for nuclear fuel reprocessing application. J Solid State Electrochem 18:411-25CrossRef
    14.Ningshen S, Sakairi M, Suzuki K, Ukai S (2013) The passive film characterization and anodic polarization behavior of 11 % Cr ferritic/martensitic and 15 % Cr oxide dispersion strengthened steels in different electrolytic solutions. Appl Surf Sci 248:345-55CrossRef
    15.Ningshen S, Sakairi M, Suzuki K, Ukai S (2014) The corrosion resistance and passive film compositions of 12 % Cr and 15 % Cr oxide dispersion strengthened steels in nitric acid media. Corros Sci 78:322-34CrossRef
    16.Armstrong RD, Cleland GE, Whillock GOH (1998) Effect of dissolved chromium species on the corrosion of stainless steel in nitric acid. J Appl Electrochem 28:1205-211CrossRef
    17.Otero E, Pardo A, Saenz E, Utrilla M, Hierro P (1996) A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel. Corros Sci 38:1485-493CrossRef
    18.Evans UR (1960) The corrosion and oxidation of metals. Edward Arnold, London
    19.Hamada E, Yamada K, Nagoshi M, Makiishi N, Sato K, Ishii T, Fukuda K, Ishikawa S, Ujiro T (2010) Direct imaging of native passive film on stainless steel by aberration corrected STEM. Corros Sci 52:3851-854CrossRef
    20.Ningshen S, Sakairi M, Suzuki K, Okuno T (2015) Corrosion performance and surface analysis of Ti-Ni-Pd-Ru-Cr alloy in nitric acid solution. Corros Sci 91:120-28CrossRef
    21.Rutten OWJS, Sandwijk AV, Weert GV (1999) The electrochemical reduction of nitrate in acidic nitrate solutions. J Appl Electrochem 29:87-2CrossRef
    22.Kajimura H, Nagano H (1992) Effects of Cr and P on the corrosion resistance behavior of stainless steels in nitric acid containing oxidizing ions. Kairyo Kankyo 41:10-8
    23.Olsson C-OA, Landolt D (2003) Passive films on stainless steels/chemistry, structure and growth. Electrochim Acta 48:1093-104CrossRef
    24.Castle JE, Clayton CR (1977) The use of in the x-ray photo-electron spectroscopy analyses of passive layers on stainless steel. Corros Sci 17:7-6CrossRef
    25.Betova I, Bojinov M, Laitinen T, M?kel? K, Pohjanne P, Saario T (2002) The transpassive dissolution mechanism of highly alloyed stainless steels—I. Experimental results and modelling procedure. Corros Sci 44:2675-697CrossRef
    26.Sato N (1982) Anodic breakdown of passive films on metals. J Electrochem Soc 129:255-60CrossRef
    27.Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139:3434-449CrossRef
    28.Betova I, Bojinov M, Kinnunen P, Laitinen T, Pohjanne P, Saario T (2002) Mechanism of transpassive dissolution of nickel-based alloys studied by impedance spectroscopy and rotating ring-disc voltammetry. Electrochim Acta 47:2093-107CrossRef
    29.Song GL (2005)
  • 作者单位:S. Ningshen (1)
    M. Sakairi (2)

    1. Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, India
    2. Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060 8628, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The degradation of materials involving corrosion in handling nitric acid in the spent fuel nuclear reprocessing plant is a serious issue. In the present work, the corrosion resistance of American Iron and Steel Institute (AISI) type 304L stainless steel (SS) and nitric acid grade (NAG) type 310L SS in 1 to 11.5 M HNO3 and boiling 15.65 M HNO3 was evaluated. In both the alloy steels, the open circuit potential and corrosion potential are shifted to more noble potential with increasing concentrations. However, the passive current density was not affected, and the transpassive potential was shifted to higher potential with increasing concentrations. The corrosion rate measured in boiling 15.65 M HNO3 after 240 h shows a much lower corrosion rate in type 310L SS (?.06 ± 0.012 mm/y) then type 304L SS (?.18 ± 0.02-.2 ± 0.001 mm/y). These observations are corroborated with the scanning electron microscope (SEM) morphologies that show severe intergranular corrosion (IGC) attack in type 304L SS then in type 310L SS. The X-ray photoelectron spectroscopy (XPS) study of the passive oxide films of both alloy steels shows the presence of Cr2O3 and SiO2, and the depth profile indicated predominant Si enrichment. Keywords Corrosion resistance Nitric acid corrosion Stainless steel Boiling test XPS SEM

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700