FaesPI, a Fagopyrum esculentum PISTILLATA ortholog, is involved only in stamen development
详细信息    查看全文
  • 作者:Zheng-Wu Fang (1)
    Xue-Ping Li (3)
    Xiao-Fang Li (1)
    Zhi-Xiong Liu (1) (2)

    1. Institute of Crop Genetics and Breeding
    ; Yangtze University ; Jingzhou City ; Hubei ; 434025 ; P. R. China
    3. College of Forestry
    ; Henan University of Science and Technology ; Luoyang ; Henan ; 471003 ; P. R. China
    2. College of Horticulture and Gardening
    ; Yangtze University ; Jingzhou City ; Hubei ; 434025 ; P. R. China
  • 关键词:B ; function ; Buckwheat ; PISTILLATA ; Stamen development
  • 刊名:Journal of Plant Biology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:2
  • 页码:102-109
  • 全文大小:2,238 KB
  • 参考文献:1. 脕lvarez-Buylla, ER, Ambrose, BA, Flores-Sandoval, E, Englund, M, Garay-Arroyo, A, Garc铆a-Ponce, B, Torre-B谩rcena, E, Espinosa-Mat铆as, S, Mart铆nez, E, Pi帽eyro-Nelson, A, Engstr枚m, P, Meyerowitz, EM (2010) B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22: pp. 3543-3559 CrossRef
    2. Becker, A, Theissen, G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: pp. 464-489 CrossRef
    3. Brockington, SF, Alexandre, R, Ramdial, J, Moore, MJ, Crawley, S, Dhingra, A, Hilu, K, Soltis, DE, Soltis, PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170: pp. 627-643 CrossRef
    4. Brockington, SF, Rudall, PJ, Frohlich, MW, Oppenheimer, DG, Soltis, PS, Soltis, DE (2012) 鈥楲iving stones鈥?reveal alternative petal identity programs within the core eudicots. Plant J 69: pp. 193-203 CrossRef
    5. Cawoy, V, Kinet, JM, Jacquemart, AL (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102: pp. 675-684 CrossRef
    6. Cawoy, V, Ledent, JF, Kinet, JM, Jacquemart, AL (2009) Floral biology of common buckwheat (Fagopyrum esculentum Moench). Eur J Plant Sci Biotechnol 3: pp. 1-9
    7. Chang, YY, Kao, NH, Li, JY, Hsu, WH, Liang, YL, Wu, JW, Yang, CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152: pp. 837-853 CrossRef
    8. Chen, MK, Hsieh, WP, Yang, CH (2012) Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63: pp. 941-961 CrossRef
    9. Clough, SJ, Bent, AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: pp. 735-743 CrossRef
    10. Coen, ES, Meyerowitz, E M (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: pp. 31-37 CrossRef
    11. Davies, B, Cartolano, M, Schwarz-Sommer, Z (2006) Flower development: The Antirrhinum Perspective. Adv Bot Res 44: pp. 279-320 CrossRef
    12. Oliveira, RR, Cesarino, I, Mazzafera, P, Dornelas, MC (2014) Flower development in Coffea arabica L.: new insights into MADS-box genes. Plant Reprod 27: pp. 79-94 CrossRef
    13. Goto, K, Meyerowitz, EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8: pp. 1548-1560 CrossRef
    14. Fang, ZW, Qi, R, Li, XF, Liu, ZX (2014) Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene 550: pp. 200-206 CrossRef
    15. Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: pp. 95-98
    16. Hofer, KA, Ruonala, R, Albert, VA (2012) The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs. Evodevo 3: pp. 26 CrossRef
    17. Jack, T, Brockman, LL, Meyerowitz, EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: pp. 683-697 CrossRef
    18. Kim, S, Yoo, MJ, Albert, VA, Farris, JS, Soltis, PS, Soltis, DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-millionyear-old duplication. Am J Bot 91: pp. 2102-2118 CrossRef
    19. Kramer, EM, Irish, VF (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161: pp. S29-S40 CrossRef
    20. Kramer, EM, Su, HJ, Wu, CC, Hu, JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the Apetala3 gene lineage. BMC Evol Biol 6: pp. 30 CrossRef
    21. Kramer, EM, Dorit, RL, Irish, VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: pp. 765-783
    22. Krizek, BA, Fletcher, JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: pp. 688-698 CrossRef
    23. Lamb, RS, Irish, VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci U S A 100: pp. 6558-6563 CrossRef
    24. Lee, HL, Irish, VF (2011) Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol 28: pp. 3367-3380 CrossRef
    25. Liu, S, Sun, Y, Du, X, Xu, Q, Wu, F, Meng, Z (2013) Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Ann Bot 112: pp. 1239-1251 CrossRef
    26. L眉, S, Fan, Y, Liu, L, Liu, S, Zhang, W, Meng, Z (2010) Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis. J Plant Physiol 167: pp. 1613-1621 CrossRef
    27. Ma, H, Pamphilis, C (2000) The ABCs of floral evolution. Cell 101: pp. 5-8 CrossRef
    28. Melzer, R, Harter, A, Rumpler, F, Kim, S, Soltis, PS, Soltis, DE, Thei脽en, G (2014) DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Ann Bot 114: pp. 1431-1443 CrossRef
    29. Murashige, T, Skoog, F (1962) A revied media for rapid growth and bioassay with tobacco cultures. Physiol Plant 15: pp. 473-497 CrossRef
    30. Pelaz, S, Ditta, GS, Baumann, E, Wisman, E, Yanofsky, MF (2000) B and C foral organ identity functions require SEPALLATA MADSbox genes. Nature 405: pp. 200-203 CrossRef
    31. Piwarzyk, E, Yang, YZ, Jack, T (2007) Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiol 145: pp. 1495-1505 CrossRef
    32. Tamura, K, Dudley, J, Nei, M, Kumar, S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: pp. 1596-1599 CrossRef
    33. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    34. Whipple, CJ, Ciceri, P, Padilla, CM, Ambrose, BA, Bandong, SL, Schmidt, RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131: pp. 6083-6091 CrossRef
    35. Wuest, SE, O'Maoileidigh, DS, Rae, L, Kwasniewska, K, Raganelli, A, Hanczaryk, K, Lohan, AJ, Loftus, B, Graciet, E, Wellmer, F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109: pp. 13452-13457 CrossRef
    36. Yang, Y, Jack, T (2004) Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol Biol 55: pp. 45-59 CrossRef
    37. Yang, Y, Xiang, H, Jack, T (2003) pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J 33: pp. 177-88 CrossRef
    38. Zahn, LM, Feng, BM, Ma, H (2006) Beyond the ABC-Model: Regulation of floral homeotic genes. Adv Bot Res 44: pp. 164-196
    39. Zhang, JS, Li, Z, Zhao, J, Zhang, S, Quan, H, Zhao, M, He, C (2014) Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol 164: pp. 748-764 CrossRef
  • 刊物主题:Plant Sciences; Plant Breeding/Biotechnology; Plant Genetics & Genomics; Plant Systematics/Taxonomy/Biogeography; Plant Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-0725
文摘
Arabidopsis thaliana PISTILLATA (PI) and Antirrhinum majus GLOBOSA (GLO), encoding B function MADS-box transcription factors specifying petal and stamen identity, have been intensively studied. To identify the possible roles of GLO/PI-like genes in regulating floral development in species without petals, we isolated and identified a PI ortholog from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analysis grouped FaesPI into the GLO/PI lineage. Expression analysis suggested that FaesPI was expressed only in developing stamens, distinguishing it from PI and GLO that were expressed in developing petals and stamens. Moreover, ectopic expression of FaesPI rescued stamen development without complementation of petal development in an Arabidopsis pi mutant. Our results suggest that FaesPI is involved only in stamen development in buckwheat. These results also suggest that FaesPI holds potential application for biotechnical engineering to establish a male sterile line of F. esculentum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700