Identification of somatic and germline mutations using whole exome sequencing of congenital acute lymphoblastic leukemia
详细信息    查看全文
  • 作者:Vivian Y Chang (1)
    Giuseppe Basso (2)
    Kathleen M Sakamoto (3)
    Stanley F Nelson (4)
  • 关键词:Pediatric leukemia ; Congenital acute lymphoblastic leukemia ; Exome sequencing
  • 刊名:BMC Cancer
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:256KB
  • 参考文献:1. van der Linden MH, Valsecchi MG, De Lorenzo P, Moricke A, Janka G, Leblanc TM, Felice M, Biondi A, Campbell M, Hann I, Rubnitz JE, Stary J, Szczepanski T, Vora A, Ferster A, Hovi L, Silverman LB, Pieters R: Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. / Blood 2009,114(18):3764-768. f="http://dx.doi.org/10.1182/blood-2009-02-204214">CrossRef
    2. Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M: Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-002: a Children's Oncology Group Report. / Leukemia 2010,24(2):285-97. f="http://dx.doi.org/10.1038/leu.2009.262">CrossRef
    3. Rubnitz JE, Link MP, Shuster JJ, Carroll AJ, Hakami N, Frankel LS, Pullen DJ, Cleary ML: Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. / Blood 1994,84(2):570-73.
    4. Montes R, Ayllon V, Gutierrez-Aranda I, Prat I, Hernandez-Lamas MC, Ponce L, Bresolin S, Te Kronnie G, Greaves M, Bueno C, Menendez P: Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia. / Blood 2011,117(18):4746-758. f="http://dx.doi.org/10.1182/blood-2010-12-322230">CrossRef
    5. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T, Marschalek R: The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. / Blood 2010,115(17):3570-579. f="http://dx.doi.org/10.1182/blood-2009-06-229542">CrossRef
    6. Pui CH, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR, Crist WM, Land VJ, Pullen DJ, Steuber CP, / et al.: Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. / Blood 1991,77(3):440-47.
    7. Satake N, Maseki N, Nishiyama M, Kobayashi H, Sakurai M, Inaba H, Katano N, Horikoshi Y, Eguchi H, Miyake M, Seto M, Kaneko Y: Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants. / Leukemia 1999,13(7):1013-017. f="http://dx.doi.org/10.1038/sj.leu.2401439">CrossRef
    8. Pui CH, Raimondi SC, Srivastava DK, Tong X, Behm FG, Razzouk B, Rubnitz JE, Sandlund JT, Evans WE, Ribeiro R: Prognostic factors in infants with acute myeloid leukemia. / Leukemia 2000,14(4):684-87. f="http://dx.doi.org/10.1038/sj.leu.2401725">CrossRef
    9. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. / Nat Genet 2011,43(4):309-15. f="http://dx.doi.org/10.1038/ng.788">CrossRef
    10. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer KA, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B: Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. / Blood 2011,118(23):6153-163. f="http://dx.doi.org/10.1182/blood-2011-07-365320">CrossRef
    11. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gomez-Grana A, de Cubas AA, Inglada-Perez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernandez-Lavado R, Diaz JA, Gomez-Morales M, Gonzalez-Neira A, Roncador G, Rodriguez-Antona C, Benitez J, Mannelli M, Opocher G, Robledo M, Cascon A: Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. / Nat Genet 2011,43(7):663-67. f="http://dx.doi.org/10.1038/ng.861">CrossRef
    12. Saarinen S, Aavikko M, Aittomaki K, Launonen V, Lehtonen R, Franssila K, Lehtonen HJ, Kaasinen E, Broderick P, Tarkkanen J, Bain BJ, Bauduer F, Unal A, Swerdlow AJ, Cooke R, Makinen MJ, Houlston R, Vahteristo P, Aaltonen LA: Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. / Blood 2011,118(3):493-98. f="http://dx.doi.org/10.1182/blood-2011-03-341560">CrossRef
    13. Homer N, Nelson SF: Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA. / Genome Biol 2010,11(10):R99. f="http://dx.doi.org/10.1186/gb-2010-11-10-r99">CrossRef
    14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. / Genome Res 2010,20(9):1297-303. f="http://dx.doi.org/10.1101/gr.107524.110">CrossRef
    15. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for variation discovery and genotyping using next-generation DNA sequencing data. / Nat Genet 2011,43(5):491-98. f="http://dx.doi.org/10.1038/ng.806">CrossRef
    16. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R: The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. / Br J Cancer 2004,91(2):355-58.
    17. Wood RD, Mitchell M, Lindahl T: Human DNA repair genes, 2005. / Mutat Res 2005,577(1-):275-83. Sep 4
    18. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. / Nat Biotechnol 2011,29(1):24-6. f="http://dx.doi.org/10.1038/nbt.1754">CrossRef
    19. Lin TL, Wang QH, Brown P, Peacock C, Merchant AA, Brennan S, Jones E, McGovern K, Watkins DN, Sakamoto KM, Matsui W: Self-renewal of acute lymphocytic leukemia cells is limited by the Hedgehog pathway inhibitors cyclopamine and IPI-926. / PLoS One 2010,5(12):e15262. f="http://dx.doi.org/10.1371/journal.pone.0015262">CrossRef
    20. Taipale J, Cooper MK, Maiti T, Beachy PA: Patched acts catalytically to suppress the activity of Smoothened. / Nature 2002,418(6900):892-97. f="http://dx.doi.org/10.1038/nature00989">CrossRef
    21. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, Tsuchida M, Ida K, Hayashi Y: FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. / Blood 2004,103(3):1085-088. f="http://dx.doi.org/10.1182/blood-2003-02-0418">CrossRef
    22. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, Murphy KM, Dauses T, Allebach J, Small D: Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. / Blood 2004,103(10):3669-676. f="http://dx.doi.org/10.1182/blood-2003-11-3775">CrossRef
    23. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB, Caligiuri MA, Cooper MR, Lecerf JM, Karol MD, Sheng S, Holford N, Curtin PT, Druker BJ, Heinrich MC: Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. / Blood 2006,108(12):3674-681. f="http://dx.doi.org/10.1182/blood-2006-02-005702">CrossRef
    24. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G, Cortes J, Kantarjian HM, Deangelo DJ, Huntsman-Labed A, Dutreix C, Del Corral A, Giles F: Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. / Leukemia 2012,26(9):2061-068. f="http://dx.doi.org/10.1038/leu.2012.115">CrossRef
    25. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, Grandin W, Lebwohl D, Wang Y, Cohen P, Fox EA, Neuberg D, Clark J, Gilliland DG, Griffin JD: Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. / Blood 2005,105(1):54-0. f="http://dx.doi.org/10.1182/blood-2004-03-0891">CrossRef
    26. The pre-publication history for this paper can be accessed here:f="http://www.biomedcentral.com/1471-2407/13/55/prepub" class="a-plus-plus">http://www.biomedcentral.com/1471-2407/13/55/prepub
  • 作者单位:Vivian Y Chang (1)
    Giuseppe Basso (2)
    Kathleen M Sakamoto (3)
    Stanley F Nelson (4)

    1. Department of Pediatrics, Division of Hematology-Oncology, University of California, Los Angeles, 10833 Le Conte Ave., MDCC A2-410, Los Angeles, CA, 90095, USA
    2. Woman and Child Health Department, University of Padova, Via Giustiniani, 335128, PADOVA, Italy
    3. Department of Pediatrics, Division of Hematology/Oncology, Stanford University School of Medicine, CCSR-1215C, 269 Campus Drive, Stanford, CA, 94305-5162, USA
    4. Department of Human Genetics, Pathology and Laboratory Medicine, and Psychiatry, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
  • ISSN:1471-2407
文摘
Background Acute lymphoblastic leukemia (ALL) diagnosed within the first month of life is classified as congenital ALL and has a significantly worse outcome than ALL diagnosed in older children. This suggests that congenital ALL is a biologically different disease, and thus may be caused by a distinct set of mutations. To understand the somatic and germline mutations contributing to congenital ALL, the protein-coding regions in the genome were captured and whole-exome sequencing was employed for the identification of single-nucleotide variants and small insertion and deletions in the germlines as well as the primary tumors of four patients with congenital ALL. Methods Exome sequencing was performed on Illumina GAIIx or HiSeq 2000 (Illumina, San Diego, California). Reads were aligned to the human reference genome and the Genome Analysis Toolkit was used for variant calling. An in-house developed Ensembl-based variant annotator was used to richly annotate each variant. Results There were 1- somatic, protein-damaging mutations per ALL, including a novel mutation in Sonic Hedgehog. Additionally, there were many germline mutations in genes known to be associated with cancer predisposition, as well as genes involved in DNA repair. Conclusion This study is the first to comprehensively characterize the germline and somatic mutational profile of all protein-coding genes patients with congenital ALL. These findings identify potentially important therapeutic targets, as well as insight into possible cancer predisposition genes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700