Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis
详细信息    查看全文
  • 作者:Jiawei Lai ; Nilanjan Chakraborty
  • 关键词:Turbulent premixed flame ; Non ; unity Lewis number ; Direct numerical simulation ; Flame ; wall interaction
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:96
  • 期:2
  • 页码:279-308
  • 全文大小:17,954 KB
  • 参考文献:1.Heywood, J.B.: Internal combustion engine fundamentals. Mcgraw-Hill, New York (1988)
    2.Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2005)
    3.Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)CrossRef
    4.Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–44 (1996)CrossRef
    5.Bruneaux, G., Poinsot, T., Ferziger, J.: Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)CrossRef MATH
    6.Alshaalan, T.M., Rutland, C.J.: Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc. Combust. Inst. 27, 793–799 (1998)CrossRef
    7.Alshaalan, T., Rutland, C.J.: Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174, 135–165 (2002)CrossRef
    8.Gruber, A., Sankaran, R., Hawkes, E., Chen, J.: Turbulent flame-wall interaction: a direct numerical simulation study. J Fluid Mech. 658, 5–32 (2010)CrossRef MATH
    9.Dabireau, F., Cuenot, B., Vermorel, O., Poinsot, T.: Interaction of flames of H 2+O 2 with inert walls. Combust. Flame 135, 123–133 (2003)CrossRef
    10.Cebeci, T., Cousteix, J.: Modeling and computation of boundary-layer flows. Springer (2005)
    11.Bilger, R.: Some aspects of scalar dissipation. Flow. Turb. Combust. 72, 93–114 (2004)CrossRef MATH
    12.Bray, K.: Turbulent flows with premixed reactants. In: Turbulent reacting flows, 115-183. Springer (1980)
    13.Chakraborty, N., Champion, M., Mura, A., Swaminathan, N.: Scalar dissipation rate approach to reaction rate closure. In: Swaminathan, N., Bray, K.N.C. (eds.) Turbulent premixed flame, pp 76–1023. Cambridge University Press, Cambridge (2011)
    14.Borghi, R.: Turbulent premixed combustion: Further discussions on the scales of fluctuations. Combust. Flame 80, 304–312 (1990)CrossRef
    15.Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)CrossRef
    16.Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)CrossRef
    17.Swaminathan, N., Bray, K.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame 143, 549–565 (2005)CrossRef
    18.Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)
    19.Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids 19, 045104 (2007)
    20.Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theor. Modell. 12, 671–698 (2008)CrossRef MATH
    21.Mura, A., Robin, V, Champion, M., Hasegawa, T.: Small-scale features of velocity and scalar fields of turbulent premixed flames. Flow Turbul. Combust. 82, 339–358 (2009)CrossRef MATH
    22.Kolla, H., Rogerson, J., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modeling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRef
    23.Chakraborty, N., Swaminathan, N.: Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol. 182, 1201–1240 (2010)CrossRef
    24.Chakraborty, N., Swaminathan, N.: Effects of Lewis number on scalar variance transport in premixed flames. Flow Turb. Combust. 87, 261–292 (2011)CrossRef MATH
    25.Chakraborty, N., Swaminathan, N.: Effects of turbulent Reynolds number on the scalar dissipation rate transport in turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Combust. Sci. Technol. 185, 676–709 (2013)CrossRef
    26.Mizomoto, M., Asaka, S., Ikai, S., Law, C.: Effects of preferential diffusion on the burning intensity of curved flames. Proc. Combust. Inst. 20, 1933–1940 (1984)CrossRef
    27.Dinkelacker, F., Manickam, B., Muppala, S.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158, 1742–1749 (2011)CrossRef
    28.Clavin, P., Williams, F.: Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251–282 (1982)CrossRef MATH
    29.Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRef MATH
    30.Sivashinsky, G.I.: Instabilities, pattern formation, and turbulence in flames. An. Rev. Fluid Mech. 15, 179–199 (1983)CrossRef
    31.Abdel-Gayed, R., Bradley, D., Hamid, M., Lawes, M.: Lewis number effects on turbulent burning velocity. Proc. Combust. Inst. 20, 505–512 (1985)CrossRef
    32.Libby, P.A., Linan, A., Williams, F.A.: Strained premixed laminar flames with nonunity lewis numbers. Combust. Sci. Technol. 34, 257–293 (1983)CrossRef
    33.Renou, B., Boukhalfa, A., Puechberty, D., Trinite, M.: Effects of stretch on the local structure of preely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst. 27, 841–847 (1998)CrossRef
    34.Haworth, D., Poinsot, T.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRef
    35.Rutland, C., Trouve, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94, 41–57 (1993)CrossRef
    36.Trouve, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)CrossRef MathSciNet MATH
    37.Chakraborty, N., Cant, R.: Influence of lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)CrossRef
    38.Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids 20, 065102 (2008)CrossRef
    39.Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)CrossRef
    40.Chakraborty, N., Cant, R.: Effects of lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21, 035110 (2009)CrossRef
    41.Chakraborty, N., Cant, R.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)CrossRef
    42.Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale direct numerical simulations of turbulent combustion using s3d. Comput. Sci. Discov. 2, 015001 (2009)CrossRef
    43.Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH 4-air and H 2-air flames: A comparative study. Combust. Flame 154, 259–280 (2008)CrossRef
    44.Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef
    45.Echekki, T., Chen, J.H.: Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 303–311 (1999)
    46.Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N.: Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct Numerical Simulation based validation. Proc. Combust. Inst. 34, 1151–1162 (2013)CrossRef
    47.Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame kernels. In: Recent Advances in DNS and LES, 191–202. Springer (1999)
    48.Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large Eddy simulation of turbulent premixed combustion, Proc. Combust. Inst. 27, 917–925 (1998)CrossRef
    49.Swaminathan, N., Grout, R.G.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)CrossRef MathSciNet
    50.Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame 158, 1372–1390 (2011)CrossRef
    51.Dopazo, C, Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 158, 1729–1736 (2015)CrossRef
    52.Poinsot, T.J., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)CrossRef MathSciNet MATH
    53.Wray, A.A.: Minimal storage time advancement schemes for spectral methods, unpublished report. NASA Ames Research Center, California (1990)
    54.Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA Ames Research Center, California (1981)
    55.Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRef MATH
    56.Huang, W.M., Vosen, S.R., Greif, R.: Heat transfer during laminar flame quenching. Proc. Combust. Inst. 21, 1853–1860 (1986)CrossRef
    57.Jarosinsky, J.: A survey of recent studies on flame extinction. Combust. Sci. Technol 12, 81–116 (1986)CrossRef
    58.Vosen, S.R., Greif, R., Westbrook, C.: Unsteady heat transfer in laminar quenching. Proc. Combust. Inst 20, 76–83 (1984)
    59.Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General Formulation. Combust. Flame 61, 87–102 (1985)CrossRef
    60.Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT press, Massachusetts (1972)
    61.Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef
    62.Malkeson, S.P., Chakraborty, N: Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys. Rev. E 83(4), 046308 (2011)CrossRef
  • 作者单位:Jiawei Lai (1)
    Nilanjan Chakraborty (1)

    1. School of Mechanical and Systems Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics
    Automotive Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1987
文摘
The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number R e t . The statistics of head on quenching have been analysed in terms of the wall Peclet number P e (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(P e) for the turbulent L e=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both P e and Φ in turbulent cases remain comparable to the corresponding laminar values for L e=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of P e and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700