Low-dose CT in body-packers: delineation of body packs and radiation dose in a porcine model
详细信息    查看全文
  • 作者:Michael K. Scherr (1)
    Oliver Peschel (2)
    Jochen M. Grimm (1)
    Edvard Ziegeler (1)
    Michael Uhl (3)
    Lucas L. Geyer (1)
    Maximilian F. Reiser (1)
    Stefan Wirth (1)
  • 关键词:Delineation of drug packages ; Low ; dose computed tomography ; Illicit drugs ; Body packing ; Dose reduction ; CT window settings
  • 刊名:Forensic Science, Medicine, and Pathology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:10
  • 期:2
  • 页码:170-178
  • 全文大小:1,382 KB
  • 参考文献:1. United Nations Office on Drugs and Crime (UNODOC), Vienna. World drug report 2010. 2010. www.unodc.org/documents/wdr/WDR_2010/World_Drug_Report_2010_lo-res.pdf. Accessed 1 Feb 2013.
    2. Traub SJ, Hoffman RS, Nelson LS. Body packing—the internal concealment of illicit drugs. N Engl J Med. 2003;349:2519-6. CrossRef
    3. Norfolk GA. The fatal case of a cocaine body-stuffer and a literature review—towards evidence based management. J Forensic Leg Med. 2007;14:49-2. CrossRef
    4. Flach PM, Ross SG, Ampanozi G, et al. “Drug mules-as a radiological challenge: sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox. Eur J Radiol. 2012;81:2518-6. CrossRef
    5. Booker RJ, Smith JE, Rodger MP. Packers, pushers and stuffers-managing patients with concealed drugs in UK emergency departments: a clinical and medicolegal review. Emerg Med J. 2009;26:316-0. CrossRef
    6. Hergan K, Kofler K, Oser W. Drug smuggling by body packing: what radiologists should know about it. Eur Radiol. 2004;14:736-2. CrossRef
    7. Hassanian-Moghaddam H, Abolmasoumi Z. Consequence of body packing of illicit drugs. Arch Iran Med. 2007;10:20-.
    8. Schaper A, Hofmann R, Bargain P, et al. Surgical treatment in cocaine body packers and body pushers. Int J Colorectal Dis. 2007;22:1531-. CrossRef
    9. Yang RM, Li L, Feng J, et al. Heroin body packing: clearly discerning drug packets using CT. South Med J. 2009;102:470-. CrossRef
    10. Poletti PA, Canel L, Becker CD, et al. Screening of illegal intracorporeal containers (“body packing-: is abdominal radiography sufficiently accurate? A comparative study with low-dose CT. Radiology. 2012;265:772-. CrossRef
    11. Tsapaki V, Rehani M, Saini S. Radiation safety in abdominal computed tomography. Semin Ultrasound CT MR. 2010;31:29-8. CrossRef
    12. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078-6. CrossRef
    13. Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med. 2007;357:2277-4. CrossRef
    14. Jin DH, Lamberton GR, Broome DR, et al. Effect of reduced radiation CT protocols on the detection of renal calculi. Radiology. 2010;255:100-. CrossRef
    15. Maurer MH, Niehues SM, Schnapauff D, et al. Low-dose computed tomography to detect body-packing in an animal model. Eur J Radiol. 2011;78:302-. CrossRef
    16. Pache G, Einhaus D, Bulla S, et al. Low-dose computed tomography for the detection of cocaine body packs: clinical evaluation and legal issues. RoFo. 2012;184:122-. CrossRef
    17. Poletti PA, Andereggen E, Rutschmann O, et al. Indications for low-dose CT in the emergency setting. Rev Med Suisse. 2009;5:1590-.
    18. European guidelines on quality criteria for computed tomography 2000. Luxembourg: Office for Official Publications of the European Communities; 1999.
    19. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257:158-6. CrossRef
    20. Le Heron JC. Estimation of effective dose to the patient during medical x-ray examinations from measurements of the dose-area product. Phys Med Biol. 1992;37:2117-6. CrossRef
    21. Mettler FA Jr, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254-3. CrossRef
    22. Haller O, Karlsson L, Nyman R. Can low-dose abdominal CT replace abdominal plain film in evaluation of acute abdominal pain? Ups J Med Sci. 2010;115:113-0. CrossRef
    23. Tartari S, Rizzati R, Righi R, et al. Low-dose unenhanced CT protocols according to individual body size for evaluating suspected renal colic: cumulative radiation exposures. Radiol Med. 2010;115:105-4. CrossRef
    24. Poletti PA, Platon A, Rutschmann OT, et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. Am J Roentgenol. 2007;188:927-3. CrossRef
    25. Mueck FG, Korner M, Scherr MK, et al. Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR). RoFo. 2012;184:229-8. CrossRef
    26. Taheri MS, Hassanian-Moghaddam H, Birang S, et al. Swallowed opium packets: CT diagnosis. Abdom Imaging. 2008;33:262-. CrossRef
    27. Udayasankar UK, Li J, Baumgarten DA, et al. Acute abdominal pain: value of non-contrast enhanced ultra-low-dose multi-detector row CT as a substitute for abdominal radiographs. Emerg Radiol. 2009;16:61-0. CrossRef
    28. Grimm JM, Wirth S, Reiser MF, Scherr M. Letter to the editor on the article by Pache G et al. Low-dose computed tomography for the detection of cocaine body packs: clinical evaluation and legal issues. RoFo. 2012;184:122-. CrossRef
    29. Ziegeler E, Grimm JM, Wirth S, et al. Computed tomography scout views vs. conventional radiography in body-packers—delineation of body-packs and radiation dose in a porcine model. Eur J Radiol. 2012;81:3883-. CrossRef
    30. Sengupta A, Page P. Window manipulation in diagnosis of body packing using computed tomography. Emerg Radiol. 2008;15:203-. CrossRef
  • 作者单位:Michael K. Scherr (1)
    Oliver Peschel (2)
    Jochen M. Grimm (1)
    Edvard Ziegeler (1)
    Michael Uhl (3)
    Lucas L. Geyer (1)
    Maximilian F. Reiser (1)
    Stefan Wirth (1)

    1. Department of Clinical Radiology, Ludwig-Maximilians-University Munich, Nussbaumstreet 20, 80336, Munich, Germany
    2. Institute of Forensic Medicine, Ludwig-Maximilians-University Munich, Nussbaumstreet 26, 80336, Munich, Germany
    3. Chemistry Department, Bavarian State Criminal Police Office, Maillingerstreet 15, 80636, Munich, Germany
  • ISSN:1556-2891
文摘
Purpose To compare low-dose computed tomography (CT) with standard CT and conventional radiography (CR) regarding delineation of body packs and radiation dose. Methods Nine samples of illicit drugs including cocaine, heroin, and hashish were positioned in the rectum of a 121.5?kg pig cadaver. Each sample was scanned on a 64-row MDCT with 120?kV: one standard modulated pelvic protocol (STD), and without modulation at 80?mA (LD80), 30?mA (LD30), and 10?mA (LD10). Additionally, conventional abdominal anterior–posterior radiographs (77?kV and 106?±?13?mA) were taken. Body pack characteristics (wrapping, content, shape) were rated independently by two radiologists and summarized to a delineation score from 0 to 9 with scores ? representing sufficient delineation. Mean delineation scores were calculated for CR and CT protocols. These were additionally differentiated for readings in soft tissue (S), lung (L), user defined, variable window settings (V), and in cumulative window evaluation including all the other window settings (SLV). Effective doses were calculated (mSv). Results The CR delineation score was insufficient (3.1?±?2.5; 2.4?±?0.3?mSv). For CT, the SLV window setting performed best (p?<?0.01). Its score significantly (p?<?0.01) declined with decreasing effective radiation doses: STD (8.8?±?0.5; 10.6?mSv), LD80 (8.2?±?0.7; 2.6?mSv), LD30 (6.8?±?1.3; 1.0?mSv), and LD10 (4.6?±?1.9; 0.3?mSv). Thus, LD30 was the protocol using the lowest but sufficient dose. Moreover, for LD30 further differentiation between the particular window settings resulted in scores of 6.4?±?1.3 (L), 6.3?±?1.2 (V), and 3.1?±?1.0 (S). Conclusions With appropriate window settings, low-dose CT at 30?mA allowed for sufficient body-pack delineation below the dose of CR, which itself performed insufficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700