The Iberian Peninsula as a potential source for the plant species pool in Germany under projected climate change
详细信息    查看全文
文摘
The application of niche-based modelling techniques to plant species has not been explored for the majority of taxa in Europe, primarily due to the lack of adequate distributional data. However, it is of crucial importance for conservation adaptation decisions to assess and quantify the likely pool of species capable of colonising a particular region under altered future climate conditions. We here present a novel method that combines the species pool concept and information about shifts in analogous multidimensional climate space. This allows us to identify regions in Europe with a current climate which is similar to that projected for future time periods in Germany. We compared the extent and spatial location of climatically analogous European regions for three projected greenhouse gas emission scenarios in Germany for the time period 2071–2080 (+2.4¡ãC, +3.3¡ãC, +4.5¡ãC average increase in mean annual temperature) to those of the recent past in Europe (1961–90). Across all three scenarios, European land areas which are characterised by climatic conditions analogue to those found in Germany decreased from 14 % in 1961–1990 to ca. 10 % in 2071–2080. All scenarios show disappearing current climate types in Germany, which can mainly be explained with a general northwards shift of climatically analogous regions. We estimated the size of the potential species pool of these analogous regions using floristic inventory data for the Iberian Peninsula as 2,354 plant species. The identified species pool in Germany indicates a change towards warmth and drought adapted southern species. About one-third of the species from the Iberian analogous regions are currently already present in Germany. Depending on the scenario used, 1,372 (+2.4¡ãC average change of mean annual temperature), 1,399 (+3.3¡ãC) and 1,444 (+4.5¡ãC) species currently not found in Germany, occur in Iberian regions which are climatically analogous to German 2071–80 climate types. We believe that our study presents a useful approach to illustrate and quantify the potential size and spatial distribution of a pool of species potentially colonising new areas under changing climatic conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700