Fast Solution for Large-Scale 2-D Convection-Diffusion, Reacting Flows
详细信息    查看全文
文摘
2-D convection-diffusion, reacting flows in a single channel of catalytic monoliths are investigated. The fluid dynamics are modelled by a steady state, boundary-layer equations, which is a large system of parabolic partial differential equations (PDEs) with nonlinear boundary conditions arising from the coupling between the gas-phase and surface processes. The chemical processes are modelled using detailed chemistry. The PDEs are semi-discretized by a method of lines leading to a large-scale, structured differential algebraic equations (DAEs). The DAEs are solved using a tailored BDF code. We exploit the structure of the Jacobian and freeze the diffusion coefficients during approximation of Jacobian by the finite difference. By applying our approach, the computation times have been reduced by a factor of 4 to 10 and more depending on the particular problem.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700