Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork
详细信息    查看全文
  • 作者:Arnis Druka (1)
    Ilze Druka (1) (2)
    Arthur G Centeno (3)
    Hongqiang Li (3)
    Zhaohui Sun (3)
    William TB Thomas (1)
    Nicola Bonar (1)
    Brian J Steffenson (4)
    Steven E Ullrich (5)
    Andris Kleinhofs (5)
    Roger P Wise (6) (7)
    Timothy J Close (8)
    Elena Potokina (9)
    Zewei Luo (9)
    Carola Wagner (10)
    Günther F Schweizer (11)
    David F Marshall (1)
    Michael J Kearsey (9)
    Robert W Williams (3)
    Robbie Waugh (1)
  • 刊名:BMC Genetics
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:9
  • 期:1
  • 全文大小:1188KB
  • 参考文献:1. Damerval C, Maurice A, Josse JM, De Vienne D: Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. / Genetics 1994, 137: 289-01.
    2. Brem RB, Yvert G, Clinton R, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. / Science 2002, 296: 752-55. CrossRef
    3. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH: Genetics of gene expression surveyed in maize, mouse and man. / Nature 2003, 422: 297-02. CrossRef
    4. Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW: Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. / Neuroinformatics 2003, 1: 343-57. CrossRef
    5. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ: An integrative genomics approach to infer causal associations between gene expression and disease. / Nat Genet 2005, 37: 710-17. CrossRef
    6. Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T: Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. / BMC Genomics 2007, 8: 22. CrossRef
    7. Decook R, Lall S, Nettleton D, Howell SH: Genetic regulation of gene expression during shoot development in Arabidopsis. / Genetics 2005, 172: 1155-164. CrossRef
    8. West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA: Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript Level Variation in Arabidopsis. / Genetics 2006, 175: 1441-450. CrossRef
    9. Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, Sederoff R: Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. / Plant Physiol 2004, 135: 2368-378. CrossRef
    10. Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR: Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. / Genetics 2005, 169: 2295-303. CrossRef
    11. Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Jansson S, Taylor G: The genetics and genomics of the drought response in Populus. / Plant J 2006, 48: 321-41. j.1365-313X.2006.02864.x">CrossRef
    12. Jordan MC, Somers DJ, Banks TW: Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. / Plant Biotechnol J 2007, 5: 442-53. j.1467-7652.2007.00253.x">CrossRef
    13. Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M: eQTL analysis of 16,000 barley genes reveals a complex pattern of genome wide transcriptional regulation. / Plant J 2007, 53: 90-01. j.1365-313X.2007.03315.x">CrossRef
    14. Donohue TJ, Thomas CM: Policy proposal for publication of papers with data sets from genome-wide studies. / Microbiology 2004, 150: 3521-522. CrossRef
    15. Bhalla R, Narasimhan K, Swarup S: Metabolomics and its role in understanding cellular responses in plants. / Plant Cell Rep 2005, 24: 562-71. CrossRef
    16. Dalma-Weiszhausz DD, Chicurel ME, Gingeras TR: Microarrays and genetic epidemiology: a multipurpose tool for a multifaceted field. / Genet Epidemiol 2002, 23: 4-0. CrossRef
    17. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey M: SFP genotyping from Affymetrix arrays is robust but largely detects cis-acting expression regulators. / Genetics 2007, 176: 789-00. CrossRef
    18. Chesler EJ, Lu L, Wang J, Williams RW, Manly KF: WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behaviour. / Nat Neurosci 2004, 7: 485-86. CrossRef
    19. Wang J, Williams RW, Manly KF: WebQTL: web-based complex trait analysis. / Neuroinformatics 2003, 1: 299-08. CrossRef
    20. Schema and description of the database underlying GeneNetwork[http://genenetwork.org/cgi-bin/schema.py]
    21. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ: A molecular, isozyme and morphological map of the barley ( Hordeum vulgare ) genome. / Theor Appl Genet 1993, 86: 705-12. CrossRef
    22. Hayes P, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak JD, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg DM, Kleinhofs A: Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. / Theor Appl Genet 1993, 87: 392-01. CrossRef
    23. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. / Nucleic Acids Res 2003, 31: e15. CrossRef
    24. Association Genetics of UK Elite Barley (AGOUEB)[http://www.agoueb.org]
    25. Coordinated Agricultural Project (CAP)[http://barleycap.coafes.umn.edu]
    26. Hayes P, Szucs P: Disequilibrium and association in barley: thinking outside the glass. / Proc Natl Acad Sci USA 2006, 103: 18385-8386. CrossRef
    27. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R: Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. / Proc Natl Acad Sci USA 2006, 103: 18656-8661. CrossRef
    28. Manly KF, Olson JM: Overview of QTL mapping software and introduction to map manager QT. / Mamm Genome 1999, 10: 327-34. CrossRef
    29. Wu RL, Ma CX, Casella G: Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL. Springer-Verlag, New York 2007.
    30. Doerge RW: Mapping and analysis of quantitative trait loci in experimental populations. / Nat Rev Genet 2002, 3: 43-2. CrossRef
    31. Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. / Genetics 1994, 138: 963-71.
    32. Bennewitz J, Reinsch N, Kalm E: Improved confidence intervals in quantitative trait loci mapping by permutation bootstrapping. / Genetics 2002, 160: 1673-686.
    33. Visscher PM, Thompson R, Haley CS: Confidence intervals in QTL mapping by bootstrapping. / Genetics 1996, 143: 1013-020.
    34. Magwene PM, Kim J: Estimating genomic coexpression networks using first-order conditional independence. / Genome Biol 2004, 5: R100. CrossRef
    35. Yu T, Sun W, Yuan S, Li KC: Study of coordinative gene expression at the biological process level. / Bioinformatics 2005, 21: 3651-657. CrossRef
    36. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, Dolinski K, Troyanskaya OG: Discovery of biological networks from diverse functional genomic data. / Genome Biol 2005, 6: R114. CrossRef
    37. List of papers describing use or referencing GeneNetwork[http://genenetwork.org/reference.html]
    38. Ma CX, Casella G, Wu RL: Functional mapping of quantitative trait loci underlying the character process: A theoretical framework. / Genetics 2002, 161: 1751-762.
    39. Wu RL, Lin M: Functional mapping -how to map and study the genetic architecture of dynamic complex traits. / Nat Rev Genet 2006, 7: 229-37. CrossRef
    40. Wu RL, Ma CX, Hou W, Corva P, Medrano JF: Functional mapping of quantitative trait loci that interact with the hg gene to regulate growth trajectories in mice. / Genetics 2005, 171: 239-49. CrossRef
    41. Mauricio R: Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. / Nature Rev Genet 2001, 2: 370-81. CrossRef
    42. Anholt RR, Mackay TFC: Quantitative genetic analyses of complex behaviours in Drosophila . / Nature Rev Genet 2004, 5: 838-49. CrossRef
    43. Ambros V: Control of developmental timing in Caenorhabditis elegans . / Curr Opin Genet Dev 2000, 10: 428-3. CrossRef
    44. Rougvie AE: Control of developmental timing in animals. / Nature Rev Genet 2001, 2: 690-01. CrossRef
    45. Wang ZH, Wu RL: A statistical model for high resolution mapping of quantitative trait loci determining human HIV-1 dynamics. / Stat Med 2004, 23: 3033-051. CrossRef
    46. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. / Science 1996, 271: 1582-586. CrossRef
    47. Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R: An atlas of gene expression from seed to seed through barley development. / Functional Integrative Genomics 2006, 6: 202-11. CrossRef
    48. Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R: Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. / Theoretical and Applied Genetics 2008, 117: 261-2. CrossRef
    49. Caldo RA, Nettleton D, Peng J, Wise RP: Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. / Mol Plant Microbe Interact 2006, 19: 939-7. CrossRef
    50. Caldo RA, Nettleton D, Wise RP: Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. / Plant Cell 2004, 16: 2514-8. CrossRef
    51. Zhang L, Castell-Miller C, Dahl S, Steffenson B, Kleinhofs A: Parallel expression profiling of barley-stem rust interactions. / Funct Integr Genomics 2008, 8: 187-8. CrossRef
    52. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R: Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. / Mol Genet Genomics 2005, 274: 515-27. CrossRef
    53. Zheng J, Close TJ, Jiang T, Lonardi S: Efficient selection of unique and popular oligos for large EST databases. / Bioinformatics 2004, 20: 2101-112. CrossRef
    54. Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA: BarleyBase–an expression profiling database for plant genomics. / Nucleic Acids Res 2005, 33: D614-D618. CrossRef
    55. Matthews DE, Carollo VL, Lazo GR, Anderson OD: GrainGenes, the genome database for small-grain crops. / Nucleic Acids Res 2003, 31: 183-86. CrossRef
    56. Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L: Gramene: a resource for comparative grass genomics. / Nucleic Acids Res 2002, 30: 103-05. CrossRef
    57. Druka I: Molecular Biology Data Exchange and Visualization with XML Technology. / MSc Thesis University of Abertay, School of Computing and Creative Technologies 2007.
    58. GeneNetwork Usage Conditions and Limitations[http://genenetwork.org/conditionsofUse.html]
    59. Online tutorial written specifically for barley component of the GeneNetwork[http://barleygenetics.net/GN_barley_tutorial.html]
    60. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJ, Graner A, Niks RE: A high-density consensus map of barley to compare the distribution of QTL for partial resistance to Puccinia hordei and of defence gene homologues. / Theor Appl Genet 2007, 114: 487-00. CrossRef
    61. Friesen TL, Faris JD, Lai Z, Steffenson BJ: Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a doubled-haploid barley population. / Genome 2006, 49: 855-59. CrossRef
    62. Bilgic H, Steffenson BJ, Hayes PM: Comprehensive genetic analyses reveal differential expression of spot blotch resistance in four populations of barley. / Theor Appl Genet 2005, 111: 1238-250. CrossRef
  • 作者单位:Arnis Druka (1)
    Ilze Druka (1) (2)
    Arthur G Centeno (3)
    Hongqiang Li (3)
    Zhaohui Sun (3)
    William TB Thomas (1)
    Nicola Bonar (1)
    Brian J Steffenson (4)
    Steven E Ullrich (5)
    Andris Kleinhofs (5)
    Roger P Wise (6) (7)
    Timothy J Close (8)
    Elena Potokina (9)
    Zewei Luo (9)
    Carola Wagner (10)
    Günther F Schweizer (11)
    David F Marshall (1)
    Michael J Kearsey (9)
    Robert W Williams (3)
    Robbie Waugh (1)

    1. Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
    2. School of Computing and Creative Technologies, University of Abertay, Dundee, DD1 1HG, UK
    3. Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, USA
    4. Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
    5. Department of Crop and Soil Sciences, Washington State University, Pullman, WA99164, USA
    6. Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, IA, 50011, USA
    7. Department of Plant Pathology, Iowa State University, Ames, IA, 50011, USA
    8. Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
    9. School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
    10. Department of Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
    11. Institute for Crop Production and Plant Breeding, Dep. Genome Analysis, Bavarian State Research Center for Agriculture, Am Gereuth 6, 85354, Freising-Weihenstephan, Germany
文摘
Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700