Hypodense regions in unenhanced CT identify nonviable myocardium: validation versus 18F-FDG PET
详细信息    查看全文
  • 作者:Tobias A. Fuchs (1)
    Jelena R. Ghadri (1)
    Julia Stehli (1)
    Catherine Gebhard (1)
    Egle Kazakauskaite (1)
    Bernd Klaeser (1)
    Oliver Gaemperli (1)
    Michael Fiechter (1) (2)
    Philipp A. Kaufmann (1) (2)
  • 关键词:Non ; contrast coronary computed tomography (NCCT) ; Viability ; Positron emission tomography (PET) ; Myocardial infarction ; Computed tomography (CT)
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:39
  • 期:12
  • 页码:1920-1926
  • 全文大小:284KB
  • 参考文献:1. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42(7):1318-3. CrossRef
    2. Pazhenkottil AP, Ghadri JR, Nkoulou RN, Wolfrum M, Buechel RR, Küest SM, et al. Improved outcome prediction by SPECT myocardial perfusion imaging after CT attenuation correction. J Nucl Med 2011;52(2):196-00. CrossRef
    3. Heller GV, Links J, Bateman TM, Ziffer JA, Ficaro E, Cohen MC, et al. American Society of Nuclear Cardiology and Society of Nuclear Medicine joint position statement: attenuation correction of myocardial perfusion SPECT scintigraphy. J Nucl Cardiol 2004;11(2):229-0. CrossRef
    4. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 2007;48(9):1424-0. CrossRef
    5. Ghadri JR, Pazhenkottil AP, Nkoulou RN, Goetti R, Buechel RR, Husmann L, et al. Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI. Heart 2011;97(12):998-003. CrossRef
    6. Burger IA, Husmann L, Herzog BA, Buechel RR, Pazhenkottil AP, Ghadri JR, et al. Main pulmonary artery diameter from attenuation correction CT scans in cardiac SPECT accurately predicts pulmonary hypertension. J Nucl Cardiol 2011;18(4):634-1. CrossRef
    7. Husmann L, Tatsugami F, Aepli U, Herzog BA, Valenta I, Veit-Haibach P, et al. Prevalence of noncardiac findings on low dose 64-slice computed tomography used for attenuation correction in myocardial perfusion imaging with SPECT. Int J Cardiovasc Imaging 2009;25(8):859-5. CrossRef
    8. Husmann L, Tatsugami F, Buechel RR, Pazhenkottil AP, Kaufmann PA. Incidental detection of a pulmonary adenocarcinoma on low-dose computed tomography used for attenuation correction in myocardial perfusion imaging with SPECT. Clin Nucl Med 2010;35(9):751-. CrossRef
    9. Nasir K, Katz R, Mao S, Takasu J, Bomma C, Lima JA, et al. Comparison of left ventricular size by computed tomography with magnetic resonance imaging measures of left ventricle mass and volumes: the multi-ethnic study of atherosclerosis. J Cardiovasc Comput Tomogr 2008;2(3):141-. CrossRef
    10. Cheng VY, Dey D, Tamarappoo B, Nakazato R, Gransar H, Miranda-Peats R, et al. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging 2010;3(4):352-0. CrossRef
    11. Gupta M, Kadakia J, Hacioglu Y, Ahmadi N, Patel A, Choi T, et al. Non-contrast cardiac computed tomography can accurately detect chronic myocardial infarction: validation study. J Nucl Cardiol 2011;18(1):96-03. CrossRef
    12. Rajani R, Dey D, Berman DS. Non-enhanced cardiac computed tomography-still an open book. J Nucl Cardiol 2011;18(1):21-. CrossRef
    13. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32(7):375-10. CrossRef
    14. Nkoulou R, Pazhenkottil AP, Buechel RR, Husmann L, Valenta I, Herzog BA, et al. Impact of CT attenuation correction on the viability pattern assessed by 99mTc-tetrofosmin SPECT/18F-FDG PET. Int J Cardiovasc Imaging 2011;27(6):913-1. CrossRef
    15. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 2003;108(9):1095-00. CrossRef
    16. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, et al. ASNC imaging guidelines for nuclear cardiology procedures. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16(4):651. CrossRef
    17. Koepfli P, Hany TF, Wyss CA, Namdar M, Burger C, Konstantinidis AV, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45(4):537-2.
    18. Burkhard N, Herzog BA, Husmann L, Pazhenkottil AP, Burger IA, Buechel RR, et al. Coronary calcium score scans for attenuation correction of quantitative PET/CT 13N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2010;37(3):517-1. CrossRef
    19. Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Dierckx RA, de Boer J, et al. Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDG-PET. J Nucl Cardiol 2006;13(2):210-.
    20. Johansson L, Mattsson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals. Eur J Nucl Med 1992;19(11):933-. CrossRef
    21. Rodríguez-Granillo GA, Rosales MA, Renes P, Diez E, Pereyra J, Gomez E, et al. Chronic myocardial infarction detection and characterization during coronary artery calcium scoring acquisitions. J Cardiovasc Comput Tomogr 2010;4(2):99-07. CrossRef
    22. Sawada SG, Lewis SJ, Foltz J, Ando A, Khouri S, Kaser S, et al. Usefulness of rest and low-dose dobutamine wall motion scores in predicting survival and benefit from revascularization in patients with ischemic cardiomyopathy. Am J Cardiol 2002;89(7):811-. CrossRef
    23. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, et al. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation 1994;89(6):2552-1. CrossRef
    24. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 2007;50(20):2002-2. CrossRef
    25. Yano K, MacLean CJ. The incidence and prognosis of unrecognized myocardial infarction in the Honolulu, Hawaii, Heart Program. Arch Intern Med 1989;149(7):1528-2. CrossRef
    26. Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham study. N Engl J Med 1984;311(18):1144-. CrossRef
    27. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314(14):884-. CrossRef
    28. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987;10(3):557-7. CrossRef
    29. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 2008;117(1):103-4. CrossRef
  • 作者单位:Tobias A. Fuchs (1)
    Jelena R. Ghadri (1)
    Julia Stehli (1)
    Catherine Gebhard (1)
    Egle Kazakauskaite (1)
    Bernd Klaeser (1)
    Oliver Gaemperli (1)
    Michael Fiechter (1) (2)
    Philipp A. Kaufmann (1) (2)

    1. Department of Radiology, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, NUK C 42, 8091, Zurich, Switzerland
    2. Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
  • ISSN:1619-7089
文摘
Purpose The aim of the present study was to evaluate the accuracy of hypodense regions in non-contrast-enhanced cardiac computed tomography (unenhanced CT) to identify nonviable myocardial scar tissue. Methods Hypodense areas were visually identified in unenhanced CT of 80 patients in the left ventricular anterior, apical, septal, lateral and inferior myocardium and CT density was measured in Hounsfield units (HU). Findings were compared to 18F-fluorodeoxyglucose uptake by positron emission tomography (FDG PET), which served as the standard of reference to distinguish scar (<50?% FDG uptake) from viable tissue (?0?% uptake). Results Visually detected hypodense regions demonstrated a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 74, 97, 84 and 94?%, respectively. A receiver-operating characteristic (ROC) curve analysis revealed a cutoff value of mean HU at <28.8 for predicting scar tissue with an area under the curve of 0.93 yielding a sensitivity, specificity, PPV and NPV of 94, 90, 67 and 99?%, respectively. Conclusion Hypodense regions in unenhanced cardiac CT scans allow accurate identification of nonviable myocardial scar tissue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700