Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue
详细信息    查看全文
  • 作者:Melanie Vanessa Heck (1)
    Mekhman Azizov (1)
    Tanja Stehning (1)
    Michael Walter (2)
    Nancy Kedersha (3)
    Georg Auburger (1)
  • 关键词:TIA ; 1 ; Transcriptome ; Cell cycle ; Lipid trafficking ; RNA processing machinery ; Motor neuron disease ; Frontotemporal dementia ; Cerebellar ataxia
  • 刊名:neurogenetics
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:15
  • 期:2
  • 页码:135-144
  • 全文大小:362 KB
  • 参考文献:1. Kedersha NL et al (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147(7):1431-442
    2. Kedersha N et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871-84
    3. Teixeira D et al (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11(4):371-82
    4. Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nature reviews. Mol Cell Biol 10(6):430-36
    5. Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7(2):213-21
    6. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803-08
    7. Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(Pt 6):963-69
    8. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21(3):403-08
    9. Zhang T et al (2005) Identification of the sequence determinants mediating the nucleo-cytoplasmic shuttling of TIAR and TIA-1 RNA-binding proteins. J Cell Sci 118(Pt 23):5453-463
    10. Gilks N et al (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15(12):5383-398
    11. Anderson P et al (1990) A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8+ T lymphocytes. J Immunol 144(2):574-82
    12. Anderson P et al (2004) Post-transcriptional regulation of proinflammatory proteins. J Leukoc Biol 76(1):42-7
    13. Del Gatto-Konczak F et al (2000) The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5-splice site. Mol Cell Biol 20(17):6287-299
    14. Forch P et al (2000) The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 6(5):1089-098
    15. Dixon DA et al (2003) Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med 198(3):475-81
    16. Piecyk M et al (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 19(15):4154-163
    17. Kawakami A et al (1992) Identification and functional characterization of a TIA-1-related nucleolysin. Proc Natl Acad Sci U S A 89(18):8681-685
    18. Sanchez-Jimenez C, Izquierdo JM (2013) T-cell intracellular antigen (TIA)-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy. PLoS One 8(9):e75127
    19. Reyes R, Alcalde J, Izquierdo JM (2009) Depletion of T-cell intracellular antigen proteins promotes cell proliferation. Genome Biol 10(8):R87
    20. Li YR et al (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361-72
    21. Liu-Yesucevitz L et al (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5(10):e13250
    22. McDonald KK et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20(7):1400-410
    23. Bentmann E, Haass C, Dormann D (2013) Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43?kDa and fused in sarcoma. FEBS J 280(18):4348-370
    24. Bosco DA et al (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19(21):4160-175
    25. Daigle JG et al (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 22(6):1193-205
    26. Vance C et al (2013) ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet 22(13):2676-688
    27. Elden AC et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069-075
    28. Nonhoff U et al (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18(4):1385-396
    29. Farg MA et al (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22(4):717-28
    30. Dewey CM et al (2012) TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res 1462:16-5
    31. Hua Y, Zhou J (2004) Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 572(1-):69-4
    32. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56
    33. Vanderweyde T et al (2012) Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci Off J Soc Neurosci 32(24):8270-283
    34. Kim HJ et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467-73
    35. Gispert S et al (2012) The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 45(1):356-61
    36. Lee T et al (2011) Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 20(9):1697-700
    37. Lahut S et al (2012) ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population. PLoS One 7(8):e42956
    38. Charles P et al (2007) Are interrupted SCA2 CAG repeat expansions responsible for Parkinsonism? Neurology 69(21):1970-975
    39. Auburger GW (2012) Spinocerebellar ataxia type 2. Handb Clin Neurol 103:423-36
    40. Moujalled D et al (2013) Kinase inhibitor screening identifies cyclin-dependent kinases and glycogen synthase kinase 3 as potential modulators of TDP-43 cytosolic accumulation during cell stress. PLoS One 8(6):e67433
    41. Ohn T et al (2008) A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 10(10):1224-231
    42. Zekri L et al (2005) Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 25(19):8703-716
    43. Ferraiuolo L et al (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616-30
    44. Polymenidou M et al (2012) Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res 1462:3-5
    45. Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80
    46. Irizarry RA et al (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15
    47. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: p. Article 3
    48. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57:289-00
    49. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(?delta delta C(T)) method. Methods 25(4):402-08
    50. Geahlen JH et al (2013) Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of GKN3. Physiol Genomics 45(15):667-83
    51. Skinner JR et al (2009) Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 284(45):30941-0948
    52. He J et al (2009) Membrane insertion of the FYVE domain is modulated by pH. Proteins 76(4):852-60
    53. Voineagu I et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380-84
    54. Le Guiner C, Gesnel MC, Breathnach R (2003) TIA-1 or TIAR is required for DT40 cell viability. J Biol Chem 278(12):10465-0476
    55. Goyeneche AA, Harmon JM, Telleria CM (2006) Cell death induced by serum deprivation in luteal cells involves the intrinsic pathway of apoptosis. Reproduction 131(1):103-11
    56. Lamparska-Przybysz M, Gajkowska B, Motyl T (2006) BID-deficient breast cancer MCF-7 cells as a model for the study of autophagy in cancer therapy. Autophagy 2(1):47-8
    57. Atanasoski S et al (2006) Cell cycle inhibitors p21 and p16 are required for the regulation of Schwann cell proliferation. Glia 53(2):147-57
    58. Kim MJ et al (2005) Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21(WAF1/CIP1). Biochem Biophys Res Commun 338(2):1179-184
    59. Braun F et al (2011) Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-x(L) inhibition. PLoS One 6(8):e23577
    60. Jurk D et al (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11(6):996-004
    61. Langley B et al (2008) Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci Off J Soc Neurosci 28(1):163-76
    62. Harms C et al (2007) Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids. J Neurosci Off J Soc Neurosci 27(17):4562-571
    63. Delobel P et al (2006) Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Am J Pathol 168(3):878-87
    64. Tanaka H et al (2004) Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 127(1):155-64
    65. Zaman K et al (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci Off J Soc Neurosci 19(22):9821-830
    66. Park DS et al (1997) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci Off J Soc Neurosci 17(23):8975-983
    67. Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44(2):279-93
    68. Zehmer JK et al (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9(4):914-21
    69. Liu P et al (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279(5):3787-792
    70. Wolins NE et al (2003) Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 278(39):37713-7721
    71. Jenkins CM et al (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279(47):48968-8975
    72. Richardson RJ et al (2013) Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 203(1):238-44
    73. Kienesberger PC et al (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 283(9):5908-917
    74. Gonzalez-Muniesa P et al (2011) Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes. J Nutrigenet Nutrigenom 4(3):146-53
    75. Angers M et al (2008) Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416(3):347-55
    76. Koliwad SK et al (2009) Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem 284(38):25593-5601
    77. Ridley SH et al (2001) FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments. J Cell Sci 114(Pt 22):3991-000
    78. Stanton MJ et al (2013) Angiogenic growth factor axis in autophagy regulation. Autophagy 9(5):789-90
    79. Arisi I et al (2011) Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimer Dis 24(4):721-38
    80. Falace A et al (2010) TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 87(3):365-70
    81. Corbett MA et al (2010) A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet 87(3):371-75
    82. Stone S et al (2006) TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 15(18):2709-720
    83. Meyre D et al (2008) R125W coding variant in TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 in the French population. Hum Mol Genet 17(12):1798-802
    84. Chadt A et al (2008) Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40(11):1354-359
    85. Kaneko-Goto T et al (2008) BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57(6):834-46
    86. Murai KK, Misner D, Ranscht B (2002) Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr Biol : CB 12(3):181-90
    87. Saito H et al (1998) Expression of olfactory receptors. G-proteins and AxCAMs during the development and maturation of olfactory sensory neurons in the mouse. Brain Res Dev Brain Res 110(1):69-1
    88. Yoshihara Y et al (1995) Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. J Neurobiol 28(1):51-9
    89. Osterfield M et al (2008) Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development 135(6):1189-199
    90. Fernandez T et al (2004) Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet 74(6):1286-293
    91. Querol L et al (2013) Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann Neurol 73(3):370-80
    92. Sittaramane V et al (2009) The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininalpha1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish. Dev Biol 325(2):363-73
    93. Lin JF et al (2012) The cell neural adhesion molecule contactin-2 (TAG-1) is beneficial for functional recovery after spinal cord injury in adult zebrafish. PLoS One 7(12):e52376
    94. Buchner DA et al (2012) The juxtaparanodal proteins CNTNAP2 and TAG1 regulate diet-induced obesity. Mamm Genome Off J Int Mamm Genome Soc 23(7-):431-42
    95. Lastres-Becker I et al (2008) Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet 17(10):1465-481
    96. Chiang PM et al (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci U S A 107(37):16320-6324
    97. Stallings NR et al (2013) TDP-43, an ALS linked protein, regulates fat deposition and glucose homeostasis. PLoS One 8(8):e71793
    98. Arnold ES et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A 110(8):E736–E745
  • 作者单位:Melanie Vanessa Heck (1)
    Mekhman Azizov (1)
    Tanja Stehning (1)
    Michael Walter (2)
    Nancy Kedersha (3)
    Georg Auburger (1)

    1. Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
    2. Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tübingen, Germany
    3. Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Smith 652, One Jimmy Fund Way, Boston, MA, 02115, USA
  • ISSN:1364-6753
文摘
During cell stress, the transcription and translation of immediate early genes are prioritized, while most other messenger RNAs (mRNAs) are stored away in stress granules or degraded in processing bodies (P-bodies). TIA-1 is an mRNA-binding protein that needs to translocate from the nucleus to seed the formation of stress granules in the cytoplasm. Because other stress granule components such as TDP-43, FUS, ATXN2, SMN, MAPT, HNRNPA2B1, and HNRNPA1 are crucial for the motor neuron diseases amyotrophic lateral sclerosis (ALS)/spinal muscular atrophy (SMA) and for the frontotemporal dementia (FTD), here we studied mouse nervous tissue to identify mRNAs with selective dependence on Tia1 deletion. Transcriptome profiling with oligonucleotide microarrays in comparison of spinal cord and cerebellum, together with independent validation in quantitative reverse transcriptase PCR and immunoblots demonstrated several strong and consistent dysregulations. In agreement with previously reported TIA1 knock down effects, cell cycle and apoptosis regulators were affected markedly with expression changes up to +2-fold, exhibiting increased levels for Cdkn1a, Ccnf, and Tprkb vs. decreased levels for Bid and Inca1 transcripts. Novel and surprisingly strong expression alterations were detected for fat storage and membrane trafficking factors, with prominent +3-fold upregulations of Plin4, Wdfy1, Tbc1d24, and Pnpla2 vs. a ?.4-fold downregulation of Cntn4 transcript, encoding an axonal membrane adhesion factor with established haploinsufficiency. In comparison, subtle effects on the RNA processing machinery included up to 1.2-fold upregulations of Dcp1b and Tial1. The effect on lipid dynamics factors is noteworthy, since also the gene deletion of Tardbp (encoding TDP-43) and Atxn2 led to fat metabolism phenotypes in mouse. In conclusion, genetic ablation of the stress granule nucleator TIA-1 has a novel major effect on mRNAs encoding lipid homeostasis factors in the brain, similar to the fasting effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700