Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators
详细信息    查看全文
  • 作者:Anne-Marie Boulay (1)
    Masaharu Motoshita (2) (5)
    Stephan Pfister (3)
    C茅cile Bulle (1)
    Ivan Mu帽oz (4)
    Helen Franceschini (4)
    Manuele Margni (1)

    1. CIRAIG
    ; Ecole Polytechnique of Montreal ; Montreal ; QC ; H3C 3A7 ; Canada
    2. National Institute of Advanced Industrial Science and Technology
    ; 3058569 ; Tsukuba ; Japan
    5. Department of Environmental Technology
    ; Technical University of Berlin ; 10623 ; Berlin ; Germany
    3. Institute for Environmental Engineering
    ; ETH Zurich ; 8093 ; Zurich ; Switzerland
    4. Safety and Environmental Assurance Centre
    ; Unilever ; Colworth ; UK
  • 关键词:Impact modeling ; Life cycle assessment ; Model comparison ; Water deprivation ; Water footprint
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:20
  • 期:1
  • 页码:139-160
  • 全文大小:10,009 KB
  • 参考文献:1. Aguilar-Manjarrez J (2006) WRI Major watersheds of the world delineation. FAO-Aquaculture Management and Conservation Service
    2. Alcamo J, Henrichs T, Rosch T (2000) World water in 2025鈥攇lobal modeling and scenario analysis for the World Commission on Water for the 21st century. Kassel World Water series
    3. Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B et al (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48(3):317鈥?37 CrossRef
    4. Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B et al (2003b) Global estimates of water withdrawals and availability under current and future 鈥渂usiness-as-usual鈥?conditions. Hydrol Sci J 48(3):339鈥?48 CrossRef
    5. Bauer C, Zapp P (2005) Towards generic factors for land Use and water consumption. In: Dubreuil A (ed) Life cycle assessment of metals: issues and research directions. SETAC - USA, Pensacola, USA
    6. Bayart J-B et al (2010) Framework for assessment of off-stream freshwater use within LCA. Int J Life Cycle Assess 15(5):439 CrossRef
    7. Bayart J-B et al (2014) The Water Impact Index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19(6):1336鈥?344 CrossRef
    8. Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17(1):79鈥?9 CrossRef
    9. Boulay A-M, Bouchard C et al (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16(7):639鈥?51 CrossRef
    10. Boulay A-M, Bulle C et al (2011b) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45(20):8948鈥?957 CrossRef
    11. Bourgault G, Lesage P, Margni M, Bulle C, Boulay A-M, Samson, R (2012) Quantification of uncertainty of characterisation factors due to spatial variability. SETAC Europe 22nd Annual Meeting / 6th SETAC World Congress, Berlin.
    12. Brent AC (2004) A life cycle impact assessment procedure with resource groups as areas of protection. Int J Life Cycle Assess 9(3):172鈥?79 CrossRef
    13. Bulle C, Humbert S, Jolliet O, Rosenbaum R, Margni M (2012) IMPACT World+: A new global regionalized life cycle impact assessment method, LCA XII, United States, Washington, Tacoma.
    14. Fekete B, V枚r枚smarty C, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cy 16(3):15.1-15-10
    15. Fenner K et al (2005) Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol 39(7):1932鈥?942 CrossRef
    16. Food and Agriculture Organization of the United Nations (nd.) AQUASTAT-FAO鈥檚 information system on water and agriculture. Available at: http://www.fao.org/NR/WATER/AQUASTAT/main/index.stm
    17. Frischknecht R et al. (2008) Swiss ecological scarcity method: the new version 2006
    18. Hertwich EG, McKone TE, Pease WS (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19(6):1193鈥?204
    19. Hoekstra AY et al (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7(2):e32688. doi:10.1371/journal.pone.0032688 CrossRef
    20. Initiative, U.-S.L.C (2012) http://www.wulca-waterlca.org/
    21. ISO 14046 (2014) Water footprint鈥攑rinciples, requirements and guidelines
    22. Kounina A et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707鈥?21 CrossRef
    23. Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption. UNESCO-IHE, Delft, The Netherlands
    24. Motoshita M, Itsubo N, Inaba A (2010a) Damage assessment of water scarcity for agricultural use 1. In: Proceedings of 9th international conference on EcoBalance / . National Institute of Advanced Industrial Science and Technology (AIST), pp 3鈥?
    25. Motoshita M, Itsubo N, Inaba A (2010b) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16(1):65鈥?3 CrossRef
    26. Owens JW (2002) Water resources in life-cycle impact assessment: considerations in choosing category indicators. J Ind Ecol 5(2):37鈥?4 CrossRef
    27. Perry C (2007) Efficient irrigation; inefficient communication; flawed recommendations. Irrig Drain 56:367鈥?78 CrossRef
    28. Pfister S, Bayer P (2013) Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J Clean Prod. Available at: http://www.ifu.ethz.ch/ESD/downloads/reports/Monthly_WSI_LCA_FOOD.pdf
    29. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098鈥?104 CrossRef
    30. Pfister S, Hellweg S (2011) Surface water use 鈥?human health impacts. Report of the LC-IMPACT project (EC: FP7) (p. http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_w). Retrieved from http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_water_LCIA.pdf
    31. Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113鈥?20 CrossRef
    32. Ridoutt BG, Pfister S (2013) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204鈥?07 CrossRef
    33. Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381鈥?94 CrossRef
    34. Rosenbaum R et al (2008) USEtox鈥攖he UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532鈥?46 CrossRef
    35. Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the 21st century. Cambridge University Press, Cambridge, UK
    36. UNEP Global Environment Monitoring System (GEMS) Water programme (2009) GEMStat
    37. Vorosmarty CJ et al (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284鈥?88 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7502
文摘
Purpose In the past decade, several methods have emerged to quantify water scarcity, water availability and the human health impacts of water use. It was recommended that a quantitative comparison of methods should be performed to describe similar impact pathways, namely water scarcity and human health impacts from water deprivation. This is precisely the goal of this paper, which aims to (1) identify the key relevant modeling choices that explain the main differences between characterization models leading to the same impact indicators; (2) quantify the significance of the differences between methods, and (3) discuss the main methodological choices in order to guide method development and harmonization efforts. Methods The modeling choices are analysed for similarity of results (using mean relative difference) and model response consistency (through rank correlation coefficient). Uncertainty data associated with the choice of model are provided for each of the models analysed, and an average value is provided as a tool for sensitivity analyses. Results The results determined the modeling choices that significantly influence the indicators and should be further analysed and harmonised, such as the regional scale at which the scarcity indicator is calculated, the sources of underlying input data and the function adopted to describe the relationship between modeled scarcity indicators and the original withdrawal-to-availability or consumption-to-availability ratios. The inclusion or exclusion of impacts from domestic user deprivation and the inclusion or exclusion of trade effects both strongly influence human health impacts. At both midpoint and endpoint, the comparison showed that considering reduced water availability due to degradation in water quality, in addition to a reduction in water quantity, greatly influences results. Other choices are less significant in most regions of the world. Maps are provided to identify the regions in which such choices are relevant. Conclusions This paper provides useful insights to better understand scarcity, availability and human health impact models for water use and identifies the key relevant modeling choices and differences, making it possible to quantify model uncertainty and the significance of these choices in a specific regional context. Maps of regions where these specific choices are of importance were generated to guide practitioners in identifying locations for sensitivity analyses in water footprint studies. Finally, deconstructing the existing models and highlighting the differences and similarities has helped to determine building blocks to support the development of a consensual method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700