Environmental impacts of thermal emissions to freshwater: spatially explicit fate and effect modeling for life cycle assessment and water footprinting
详细信息    查看全文
  • 作者:Stephan Pfister ; Sangwon Suh
  • 关键词:Heat impacts ; Inventory ; Power production ; Thermal emissions ; Water footprint
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:20
  • 期:7
  • 页码:927-936
  • 全文大小:995 KB
  • 参考文献:Allen PM, Arnold JC, Byars BW (1994) Downstream channel geometry for use in planning-level models. JAWRA J Am Water Resour Assoc 30:663-71View Article
    Bauer CHT, Dones R, Mayer-Spohn O, Blesl M (2008) New Energy Externalities Developments for Sustainability (NEEDS), Deliverable n° 7.2 - RS 1a “Final report on technical data, costs, and life cycle inventories of advanced fossil power generation systems-/cite>
    de Vries P, Tamis JE, Murk AJ, Smit MGD (2008) Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment. Environ Toxicol Chem 27:2591-598View Article
    Deas ML, Lowney CL (2000) Water temperature modeling review—Central Valley. California Water and Environmental Modeling Forum
    EAWAG (1997) Auswirkungen des Kernkraftwerkes Mühleberg auf den W?rmehaushalt der Aare. GBL, EAWAG, Dübendorf
    ecoinvent Centre (2010) ecoinvent data v2.2. http://?www.?ecoinvent.?org . Accessed 20 Feb 2012
    ESRI (2007) ArcGIS 9.2
    Fekete BM, V?r?smarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16:15-11-15-10
    Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91-4View Article
    Goedkoop M, Spriensma R (2001) The Eco-indicator 99: a damage oriented method for life cycle impact assessment: methodology report. Publikatiereeks produktenbeleid; nr. 36A, vol 3rd edition. Ministerie van Volkshiusvesting, Ruimtelijke Ordening en Milieubeheer, Den Haag
    Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Available at http://?lcia.?wik.?is
    Humbert S, De Schryver A, Bengoa X, Margni M, Jolliet O (2012) IMPACT 2002+: user guide draft for version Q2.21 (version adapted by Quantis). Available at: http://?www.?quantis-intl.?com/?pdf/?IMPACT2002_?UserGuide_?for_?vQ2.-1.?pdf
    ISO (2006) ISO 14044: environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, Geneva
    ISO (2013) ISO 14067: Greenhouse gases—carbon footprint of products—requirements and guidelines for quantification and communication
    ISO (2014) ISO 14046 Environmental management—water footprint—principles, requirements and guidelines
    JRC (2011) International Reference Life Cycle Data System (ILCD) Handbook—recommendations for life cycle impact assessment in the European context, 1st edn. European Commission-Joint Research Centre - Institute for Environment and Sustainability, Luxemburg
    Kounina A et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707-21View Article
    Miara A, V?r?smarty CJ, Stewart RJ, Wollheim WM, Rosenzweig B (2013) Riverine ecosystem services and the thermoelectric sector: strategic issues facing the Northeastern United States. Environ Res Lett 8:025017View Article
    Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098-104View Article
    Rosenbaum RK et al (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532-46View Article
    Roy P-O, Deschênes L, Margni M (2014) Uncertainty and spatial variability in characterization factors for aquatic acidification at the global scale. Int J Life Cycle Assess 19(4):882-90View Article
    Tendall DM, Hellweg S, Pfister S, Huijbregts MAJ, Gaillard G (2014) Impacts of river water consumption on aquatic biodiversity in life cycle assessment—a proposed method, and a case study for Europe. Environ Sci Technol 48(6):3236-244View Article
    USGS Surface-Water Data for the Nation (2011) http://?waterdata.?usgs.?gov/?nwis/?sw . Accessed 11 Sept 2011
    van Vliet MTH, Yearsley JR, Franssen WHP, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2012) Coupled daily streamflow and water temperature modelling in large river basins. Hydrol Earth Syst Sci 16:4303-321View Article
    Verones F, Hanafiah MM, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler A (2010) Characterization factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44:9364-369View Article
    Verones F, Mohd Hanafiah M, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler A (2011) Correction to characterization factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 45:7608View Article
    Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47:12248-2257View Article
    WorldClim (2011) Global clima
  • 作者单位:Stephan Pfister (1) (2)
    Sangwon Suh (2)

    1. Institute of Environmental Engineering, ETH Zurich, John-von-Neumann-Weg 9, 8093, Zurich, Switzerland
    2. Bren School of Environment, University of California, Santa Barbara, CA, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7502
文摘
Purpose Thermal emissions from electric power generation plants can lead to environmental impacts. However, such emissions have neither been comprehensively integrated in life cycle assessment (LCA), a method to quantify environmental impacts throughout the life cycle of a product, nor in water footprinting. This study presents a spatially explicit (0.5 arc degree resolution) fate and effect model for assessing the impact of thermal emissions from power production in the USA on freshwater ecosystems. Methods We developed a two-step regionalized fate model to capture short-range and long-range thermal effects. Effect factors were derived as a function of ambient temperature and used in conjunction with the fate factor to calculate the impacts. The impacts are measured as the potentially disappeared fraction (PDF) of species in the affected freshwater ecosystem volume over time. Results and discussion The long-range freshwater ecosystem impacts are dependent on the distance to sea as well as the ambient temperature, while the short-range effects are mainly influenced by the induced temperature change at the point of mixing. Our analysis showed that 95?% of the modeled grid cells in the USA have an impact of 2.5?×-0? to 2.5?×-0??PDF?m3?years per MJ emitted heat. For natural gas power production, thermal pollution can have a significant contribution to total freshwater ecosystem quality. Conclusions This study shows that thermal effects can be calculated on a spatially explicit level based on background data. It reveals the variability within a large region of the world, covering various geographic regions, and therefore helps generalizing the results for other regions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700